207
Views
0
CrossRef citations to date
0
Altmetric
Materials Engineering

Alternative cancer therapy through modeling pteridines photosensitizer quantum yield singlet oxygen production using swarm-based support vector regression and extreme learning machine

ORCID Icon
Article: 2301638 | Received 12 Jun 2023, Accepted 31 Dec 2023, Published online: 21 Jan 2024

References

  • Aboelkassem, Y., & Savic, D. (2021). Particle swarm optimizer for arterial blood flow models. Computer Methods and Programs in Biomedicine, 201, 105933. https://doi.org/10.1016/j.cmpb.2021.105933
  • Akomolafe, O., Owolabi, T. O., Rahman, M. A. A., Kechik, M. M. A., Yasin, M. N. M., & Souiyah, M. (2021). Modeling superconducting critical temperature of 122-iron-based pnictide intermetallic superconductor using a hybrid intelligent computational method. Materials (Basel, Switzerland), 14(16), 4604. https://doi.org/10.3390/ma14164604
  • Alqahtani, A., Saliu, S., Owolabi, T. O., Aldhafferi, N., Almurayh, A., & Oyeneyin, O. E. (2022). Modeling the magnetic cooling efficiency of spinel ferrite magnetocaloric compounds for magnetic refrigeration application using hybrid intelligent computational methods. Materials Today Communications, 33, 104310. https://doi.org/10.1016/j.mtcomm.2022.104310
  • Balogun, A. L., Rezaie, F., Pham, Q. B., Gigović, L., Drobnjak, S., Aina, Y. A., Panahi, M., Yekeen, S. T., & Lee, S. (2021). Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geoscience Frontiers, 12(3), 101104. https://doi.org/10.1016/j.gsf.2020.10.009
  • Basak, D. S. P., & Partababis, D. C. (2007). Support vector regression. Neural Information Processing, 11(10), 203–224. https://static.aminer.org/pdf/PDF/000/337/560/uncertainty_support_vector_method_for_ordinal_regression.pdf
  • Beheshti, Z. (2020). A time-varying mirrore d S-shape d transfer function for binary particle swarm optimization. Information Sciences, 512, 1503–1542. https://doi.org/10.1016/j.ins.2019.10.029
  • Buglak, A. A., Telegina, T. A., & Kritsky, M. S. (2016). A quantitative structure – property relationship (QSPR) study of singlet oxygen generation by pteridines. Photochemical & Photobiological Sciences, 15(6), 801–811. https://doi.org/10.1039/c6pp00084c
  • Dantola, M. L., Reid, L. O., Castaño, C., Lorente, C., Oliveros, E., & Thomas, A. H. (2017). Photosensitization of peptides and proteins by pterin derivatives. Pteridines, 28(3–4), 105–114. https://doi.org/10.1515/pterid-2017-0013
  • Derosa, M. C., & Crutchley, R. J. (2002). Photosensitized singlet oxygen and its applications. Co-Ordination Chemistry Review, 234, 351–371. https://doi.org/10.1016/S0010-8545(02)00034-6
  • Dodangeh, E., Panahi, M., Rezaie, F., Lee, S., Tien Bui, D., Lee, C. W., & Pradhan, B. (2020). Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. Journal of Hydrology, 590, 125423. https://doi.org/10.1016/j.jhydrol.2020.125423
  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., & Vapnik, V. N. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161. https://proceedings.neurips.cc/paper_files/paper/1996/hash/d38901788c533e8286cb6400b40b386d-Abstract.html
  • Frimayanti, N., Yam, M. L., Lee, H. B., Othman, R., Zain, S. M., & Rahman, N. A. (2011). Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction. International Journal of Molecular Sciences, 12(12), 8626–8644. https://doi.org/10.3390/ijms12128626
  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126
  • Ju, X., Liu, F., Wang, L., & Lee, W. J. (2019). Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners. Energy Conversion and Management, 196, 1267–1281. https://doi.org/10.1016/j.enconman.2019.06.082
  • Li, S., Fang, H., & Shi, B. (2021). Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression ✩. Reliability Engineering & System Safety, 210, 107542. https://doi.org/10.1016/j.ress.2021.107542
  • Lin, A. L., Chen, J. H., Hong, J. W., Zhao, Y. Y., Zheng, B. Y., Ke, M. R., & Huang, J. D. (2021). A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy. Journal of Inorganic Biochemistry, 217, 111371. https://doi.org/10.1016/j.jinorgbio.2021.111371
  • Mfouo-Tynga, I. S., Dias, L. D., Inada, N. M., & Kurachi, C. (2021). Photodiagnosis and photodynamic therapy features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis and Photodynamic Therapy, 34, 102091. https://doi.org/10.1016/j.pdpdt.2020.102091
  • Murillo-Escobar, J., Sepulveda-Suescun, J. P., Correa, M. A., & Orrego-Metaute, D. (2019). Urban climate forecasting concentrations of air pollutants using support vector regression improved with particle swarm optimization: Case study in Aburrá Valley, Colombia. Urban Climate, 29, 100473. https://doi.org/10.1016/j.uclim.2019.100473
  • Oliveira, C. S., Turchiello, R., Kowaltowski, A. J., Indig, G. L., & Baptista, M. S. (2011). Free radical biology & medicine major determinants of photoinduced cell death: Subcellular localization versus photosensitization efficiency. Free Radical Biology and Medicine, 51(4), 824–833. https://doi.org/10.1016/j.freeradbiomed.2011.05.023
  • Olubi, O. E., Oniya, E. O., & Owolabi, T. O. (2021). Development of predictive model for radon-222 estimation in the atmosphere using stepwise regression and grid search based-random forest regression. Journal of the Nigerian Society of Physical Sciences, 3, 132–139. https://doi.org/10.46481/jnsps.2021.177
  • Owolabi, T. O. (2019a). Development of a particle swarm optimization based support vector regression model for titanium dioxide band gap characterization. Journal of Semiconductors, 40(2), 022803. https://doi.org/10.1088/1674-4926/40/2/022803
  • Owolabi, T. O. (2019b). Modeling the magnetocaloric effect of manganite using hybrid genetic and support vector regression algorithms. Physics Letters A, 383(15), 1782–1790. https://doi.org/10.1016/j.physleta.2019.02.036
  • Owolabi, T. O. (2023). Modeling magnetocaloric effect of doped EuTiO 3 perovskite for cooling technology using swarm intelligent based support vector regression computational method. Materials Today Communications, 36, 106688. https://doi.org/10.1016/j.mtcomm.2023.106688
  • Owolabi, T. O., Amiruddin, M., & Rahman, A. (2021). Energy band gap modeling of doped bismuth ferrite multifunctional material using gravitational search algorithm optimized support vector regression. Crystal, 11(3), 246. https://doi.org/10.3390/cryst11030246
  • Oyeneyin, O. E. (2021). Predicting the bioactivity of 2-alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaCa-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking. Journal of Genetic Engineering and Biotechnology, 19, 38. https://doi.org/10.1186/s43141-021-00133-2
  • Rui, J., Zhang, H., Zhang, D., Han, F., & Guo, Q. (2019). Journal of Petroleum Science and Engineering Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization. Journal of Petroleum Science and Engineering, 180, 699–706. https://doi.org/10.1016/j.petrol.201.06.014
  • Science, N., Phenomena, C., Sabzekar, M., Mohammad, S., & Hasheminejad, H. (2021). Chaos, Solitons and Fractals. Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 144, 110738. https://doi.org/10.1016/j.chaos.2021.110738
  • Shamsah, S. M. I., & Owolabi, T. O. (2020). Modeling the maximum magnetic entropy change of doped manganite using a grid search-based extreme learning machine and hybrid gravitational search-based support vector regression. Crystals, 10(4), 310. https://doi.org/10.3390/cryst10040310
  • Shi, G., Monro, S., Hennigar, R., Colpitts, J., Fong, J., Kasimova, K., Yin, H., DeCoste, R., Spencer, C., Chamberlain, L., Mandel, A., Lilge, L., & McFarland, S. A. (2015). Ru (II) dyads derived from ˛ -oligothiophenes: A new class of potent and versatile photosensitizers for PDT. Coordination Chemistry Reviews, 282–283, 127–138. https://doi.org/10.1016/j.ccr.2014.04.012
  • Wang, C., Liang, C., Hao, Y., Dong, Z., Zhu, Y., Li, Q., Liu, Z., Feng, L., & Chen, M. (2021). Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes. Chemical Engineering Journal and the Biochemical Engineering Journal, 414, 128731. https://doi.org/10.1016/j.cej.2021.128731
  • Wang, Y., Li, R., & Chen, Y. (2021). Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine. Spectrochim Acta Part B Spectroscopy, 177, 106077. https://doi.org/10.1016/j.sab.2021.106077
  • Wu, J., & Wang, Y. (2020). A working likelihood approach to support vector regression with a data-driven insensitivity parameter. The International Journal of Machine Learning and Cybermetrics, 14, 1–18. https://link.springer.com/article/10.1007/s13042-022-01672-x
  • Yildiz, A. R. (2019). A novel hybrid whale–Nelder–Mead algorithm for optimization of design and manufacturing problems. The International Journal of Advanced Manufacturing Technology, 105(12), 5091–5104. https://doi.org/10.1007/s00170-019-04532-1
  • Yıldız, A. R., Yıldız, B. S., Sait, S. M., Bureerat, S., & Pholdee, N. (2019). A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems. Materials Testing, 61(8), 735–743. https://doi.org/10.3139/120.111378
  • Zou, L. (2021). Microprocessors and Microsystems Design of reactive power optimization control for electromechanical system based on fuzzy particle swarm optimization algorithm. Microprocessors and Microsystems, 82, 103865. https://doi.org/10.1016/j.micpro.2021.103865