422
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

CFRP hybrid composites manufacturing and electromagnetic wave shielding performance-a review

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2306556 | Received 29 Nov 2023, Accepted 11 Jan 2024, Published online: 01 Feb 2024

References

  • Agnihotri, S. N., Thakur, R. K., & Singh, K. K. (2022). Influence of nanoclay filler on mechanical properties of CFRP composites. Materials Today: Proceedings, 66, 1734–1738. https://doi.org/10.1016/j.matpr.2022.05.270
  • Aripin, A. B., Nishi, M., Suzuki, K., & Hayakawa, K. (2020). Evaluation of the mechanical and electromagnetic shielding properties of carbon fiber reinforced thermoplastics sheet made of unidirectional tape. Materials Transactions, 61(2), 251–255. https://doi.org/10.2320/matertrans.MT-ML2019008
  • Balodis, V., Brmelis, G., Kalvikis, K., Nikodemus, O., Tjarve, D., & Znotia, V. (1996). Does the Skrunda Radio Location Station diminish the radial growth of pine trees? Science of the Total Environment, 180(1), 57–64. https://doi.org/10.1016/0048-9697(95)04920-7
  • Bedi, H. S., Padhee, S. S., & Agnihotri, P. K. (2018). Effect of carbon nanotube grafting on the wettability and average mechanical properties of carbon fiber/polymer multiscale composites. Polymer Composites. 39(S2), E1184–E1195. https://doi.org/10.1002/pc.24714
  • Cecen, V., & Sarikanat, M. (2008). Experimental characterization of traditional composites manufactured by vacuum-assisted resin-transfer molding. Journal of Applied Polymer Science, 107(3), 1822–1830. https://doi.org/10.1002/app.27235
  • Coskun, Y. (2022). The impact of orientation angle and number of layers on electromagnetic shielding characteristics of carbon fiber composites. Journal of Innovative Science and Engineering6(2), 190–200.
  • Diem, E., Schwarz, C., Adlkofer, F., Jahn, O., & Rüdiger, H. (2005). Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutation Research, 583(2), 178–183. https://doi.org/10.1016/j.mrgentox.2005.03.006
  • Dutton, S., Kelly, D., & Baker, A. (2004). Composite materials for aircraft structures (2nd ed.). https://doi.org/10.2514/4.861680
  • Gamage, S. J. P. (2017). MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE. Materials (Basel), 10(12), 1350. https://doi.org/10.3390/ma10121350
  • Gandhi, O. P., Morgan, L. L., De Salles, A. A., Han, Y. Y., Herberman, R. B., & Davis, D. L. (2012). Exposure limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagnetic Biology and Medicine, 31(1), 34–51. https://doi.org/10.3109/15368378.2011.622827
  • Ganguly, S., Bhawal, P., Ravindren, R., & Das, N. C. (2018). Polymer nanocomposites for electromagnetic interference shielding: A review. Journal of Nanoscience and Nanotechnology, 18(11), 7641–7669. https://doi.org/10.1166/jnn.2018.15828
  • Ghosh, S. K., Nath, K., Nath Chowdhury, S., Paul, S., Ghosh, T., Katheria, A., Das, P., & Das, N. C. (2023). Combination effect of functionalized high aspect ratio carbonaceous nanofillers and carbon black on electrical, thermal conductivity, dielectric and EMI shielding behavior of co-continuous thermoplastic elastomeric blend composite films. Chemical Engineering Journal Advances, 15, 100505. https://doi.org/10.1016/j.ceja.2023.100505
  • González, M., Pozuelo, J., & Baselga, J. (2018). Electromagnetic shielding materials in GHz range. Chemical Record (New York, N.Y.), 18(7–8), 1000–1009. https://doi.org/10.1002/tcr.201700066
  • Gupta, H., Agnihotri, P. K., Basu, S., & Gupta, N. (2021). Electrical characterization of carbon fiber reinforced polymer composites [Paper presentation]. 2021 electrical insulation conference, EIC 2021. https://doi.org/10.1109/EIC49891.2021.9612275
  • Halimi, F., Golzar, M., Asadi, P., & Beheshty, M. H. (2013). Core modifications of sandwich panels fabricated by vacuum-assisted resin transfer molding. Journal of Composite Materials. 47(15), 1853–1863. https://doi.org/10.1177/0021998312451763
  • Hong, J., Xu, P., Xia, H., Xu, Z., & Ni, Q. Q. (2021). Electromagnetic interference shielding anisotropy enhanced by CFRP laminated structures. Composites Science and Technology. 203, 108616. https://doi.org/10.1016/j.compscitech.2020.108616
  • Jagadeesh Chandra, R. B., Shivamurthy, B., Kulkarni, S. D., & Kumar, M. S. (2019). Hybrid polymer composites for EMI shielding application- a review. Materials Research Express, 6(8), 082008. https://doi.org/10.1088/2053-1591/aaff00
  • Jia, L. C., Xu, L., Ren, F., Ren, P. G., Yan, D. X., & Li, Z. M. (2019). Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon N. Y, 144, 101–108. https://doi.org/10.1016/j.carbon.2018.12.034
  • Jiang, D., Murugadoss, V., Wang, Y., Lin, J., Ding, T., Wang, Z., Shao, Q., Wang, C., Liu, H., Lu, N., Wei, R., Subramania, A., & Guo, Z. (2019). Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. Polymer Reviews, 59(2), 280–337. https://doi.org/10.1080/15583724.2018.1546737
  • Joshi, A., Bajaj, A., Singh, R., Alegaonkar, P. S., Balasubramanian, K., & Datar, S. (2013). Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology, 24(45), 455705. https://doi.org/10.1088/0957-4484/24/45/455705
  • Jou, W. S. (2004). A novel structure of woven continuous-carbon fiber composites with high electromagnetic shielding. Journal of Electronic Materials, 33(3), 162–170. https://doi.org/10.1007/s11664-004-0175-x
  • Kim, K. W., Han, W., Kim, B. S., Kim, B. J., & An, K. H. (2017). A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment. Applied Surface Science. 415, 55–60. https://doi.org/10.1016/j.apsusc.2017.01.108
  • Kim, M., Kim, S., Seong, Y. C., Yang, K. H., & Choi, H. (2021). Multiwalled carbon nanotube buckypaper/polyacrylonitrile nanofiber composite membranes for electromagnetic interference shielding. ACS Applied Nano Materials, 4(1), 729–738. https://doi.org/10.1021/acsanm.0c03040
  • Kondawar, S. B., & Modak, P. R. (2020). Theory of EMI shielding. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817590-3.00002-6
  • Lee, J. H., Kim, Y. S., Ru, H. J., Lee, S. Y., & Park, S. J. (2022). Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Letters, 14(1), 188. https://doi.org/10.1007/s40820-022-00926-1
  • Lu, L., Xie, Y., Mei, X., Yu, Y. X., Tang, Y., & Teh, K. S. (2020). Preparation of flexible carbon fiber fabrics with adjustable surface wettability for high-efficiency electromagnetic interference shielding. ACS Applied Materials & Interfaces, 12(43), 49030–49041. https://doi.org/10.1021/acsami.0c08868
  • Ma, Y., Zhuang, Y., Li, C., Shen, X., & Zhang, L. (2022). Improving electromagnetic interference shielding while retaining mechanical properties of carbon fiber-based composites by introducing carbon nanofiber sheet into laminate structure. Polymers, 14(9), 1658. https://doi.org/10.3390/polym14091658
  • Magisetty, R. P., Shukla, A., & Kandasubramanian, B. (2019). Terpolymer (ABS) cermet (Ni-NiFe2O4) hybrid nanocomposite engineered 3D-carbon fabric mat as a X-band electromagnetic interference shielding material. Materials Letters. 238, 214–217. https://doi.org/10.1016/j.matlet.2018.12.023
  • Menta, V., Vuppalapati, R., Chandrashekhara, K., Schuman, T., & Sha, J. (2013). Elevated-temperature vacuum-assisted resin transfer molding process for high performance aerospace composites. Polymer International, 62(10), 1465–1476. https://doi.org/10.1002/pi.4444
  • Merizgui, T., Prakash, V. R. A., Gaoui, B., & Sebaey, T. A. (2022). Microwave shielding performance of TiO2/Co/GF containing high structure carbon fiber alternate laminate composite. Journal of Materials Science: Materials in Electronics, 33(2), 934–949. https://doi.org/10.1007/s10854-021-07365-5
  • Monselise, E. B. I., Levkovitz, A., Gottlieb, H. E., & Kost, D. (2011). Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas. Journal of Environmental Monitoring: JEM, 13(7), 1890–1896. https://doi.org/10.1039/c1em10031a
  • Panapoy, M., Dankeaw, A., & Ksapabutr, B. (2008). Electrical conductivity of PAN - based carbon nanofibers prepared by electrospinning method. Thammasat International Journal of Science and Technology, 13, 11–17.
  • Park, J., Hu, X., Torfeh, M., Okoroanyanwu, U., Arbabi, A., & Watkins, J. J. (2020). Exceptional electromagnetic shielding efficiency of silver coated carbon fiber fabrics: Via a roll-to-roll spray coating process. Journal of Materials Chemistry C, 8(32), 11070–11078. https://doi.org/10.1039/D0TC02048F
  • Pawar, S. P., Biswas, S., Kar, G. P., & Bose, S. (2016). High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer, 84, 398–419. https://doi.org/10.1016/j.polymer.2016.01.010
  • Rawat, P., & Singh, K. K. (2016). A strategy for enhancing shear strength and bending strength of FRP laminate using MWCNTs. IOP Conference Series: Materials Science and Engineering, 149, 012105. https://doi.org/10.1088/1757-899X/149/1/012105
  • Sankaran, S., Deshmukh, K., Ahamed, M. B., & Khadheer Pasha, S. K. (2018). Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 114, 49–71. https://doi.org/10.1016/j.compositesa.2018.08.006
  • Schlechter, M. (2022). “No Title,” EMI: Materials and technologies – abstract. [Online]. http://www.electronics.ca/
  • Singh, B. P., Choudhary, V., Saini, P., & Mathur, R. B. (2012). Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Advances, 2(2), 022151. https://doi.org/10.1063/1.4730043
  • Soliman, E., Al-Haik, M., & Taha, M. R. (2012). On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes. Journal of Composite Materials. 46(14), 1661–1675. https://doi.org/10.1177/0021998311422456
  • Stein, Y., Hänninen, O., Huttunen, P., Ahonen, M., & Ekman, R. (2015). Electromagnetic radiation - environmental indicators in our surroundings. Environmental indicators. 1011–1024. https://doi.org/10.1007/978-94-017-9499-2_56
  • Stupar, S. L., Vuksanović, M. M., Mijin, D. Ž., Milanović, B. C., Joksimović, V. J., Barudžija, T. S., & Knežević, M. R. (2022). Multispectral electromagnetic shielding and mechanical properties of carbon fabrics reinforced by silver deposition. Materials Chemistry and Physics. 289, 126495. https://doi.org/10.1016/j.matchemphys.2022.126495
  • Thomassin, J. M., Jérôme, C., Pardoen, T., Bailly, C., Huynen, I., & Detrembleur, C. (2013). Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering R: Reports, 74(7), 211–232. https://doi.org/10.1016/j.mser.2013.06.001
  • Ucar, N., Kayaoğlu, B. K., Bilge, A., Gurel, G., Sencandan, P., & Paker, S. (2018). Electromagnetic shielding effectiveness of carbon fabric/epoxy composite with continuous graphene oxide fiber and multiwalled carbon nanotube. Journal of Composite Materials. 52(24), 3341–3350. https://doi.org/10.1177/0021998318765273
  • Vo. Klemperer, C. J., & Maharaj, D. (2009). Composite electromagnetic interference shielding materials for aerospace applications. Composite Structures. 91(4), 467–472. https://doi.org/10.1016/j.compstruct.2009.04.013
  • Wilson, R., George, G., & Joseph, K. (2020). An introduction to materials for potential EMI shielding applications. Status and future. Elsevier Inc. https://doi.org/10.1016/b978-0-12-817590-3.00001-4
  • Xia, C., Shi, S. Q., & Cai, L. (2015a). Vacuum-assisted resin infusion (VARI) and hot pressing for CaCO3 nanoparticle treated kenaf fiber reinforced composites. Compos. Part B Eng, 78, 138–143. https://doi.org/10.1016/j.compositesb.2015.03.039
  • Xia, C., Shi, S. Q., Cai, L., & Hua, J. (2015b). Property enhancement of kenaf fiber composites by means of vacuum-assisted resin transfer molding (VARTM). Holzforschung, 69(3), 307–312. https://doi.org/10.1515/hf-2014-0054
  • Xing, D., Lu, L., Teh, K. S., Wan, Z., Xie, Y., & Tang, Y. (2018). Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon N. Y, 132, 32–41. https://doi.org/10.1016/j.carbon.2018.02.001
  • Yesmin, N., & Chalivendra, V. (2021). Article electromagnetic shielding effectiveness of glass fiber/epoxy laminated composites with multi-scale reinforcements. Journal of Composites Science, 5(8), 204. https://doi.org/10.3390/jcs5080204
  • Yuan, X., Jiang, J., Wei, H., Yuan, C., Wang, M., Zhang, D., Liu, L., Huang, Y., Gao, G.-L., & Jiang, Z. (2021). PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite. Composites Science and Technology. 201, 108496. https://doi.org/10.1016/j.compscitech.2020.108496
  • Zhu, S., Shi, R., Qu, M., Zhou, J., Ye, C., Zhang, L., Cao, H., Ge, D., & Chen, Q. (2021). Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Composites Science and Technology. 207, 108696. https://doi.org/10.1016/j.compscitech.2021.108696