553
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Predicting mechanical properties of self-healing concrete with Trichoderma Reesei Fungus using machine learning

ORCID Icon, , , &
Article: 2307193 | Received 14 Aug 2023, Accepted 15 Jan 2024, Published online: 27 Jan 2024

References

  • Agrawal, R. (2022). Sustainable design guidelines for additive manufacturing applications. Rapid Prototyping Journal, 28(7), 1221–1240. https://doi.org/10.1108/RPJ-09-2021-0251
  • Akande, K. O., Owolabi, T. O., Twaha, S., & Olatunji, S. O. (2014). Performance comparison of SVM and ANN in predicting compressive strength of concrete. IOSR Journal of Computer Engineering, 16(5), 88–94. https://doi.org/10.9790/0661-16518894
  • Akter, S., Ali, R. M. E., Karim, S., Khatun, S., & Alam, M. F. (2018). Geomorphological, geological and engineering geological aspects for sustainable urban planning of Mymensingh City, Bangladesh. Open Journal of Geology, 08(07), 737–752. https://doi.org/10.4236/ojg.2018.87043
  • AlAlaween, W., Abueed, O., Gharaibeh, B., Alalawin, A., Mahfouf, M., Alsoussi, A., & Albashabsheh, N. (2022). The development of a radial based integrated network for the modelling of 3D fused deposition. Rapid Prototyping Journal, 29(2), 408–421. https://doi.org/10.1108/RPJ-04-2022-0121
  • Arvas, M., Pakula, T., Lanthaler, K., Saloheimo, M., Valkonen, M., Suortti, T., Robson, G., & Penttilä, M. (2006). Common features and interesting differences in transcriptional responses to secretion stress in the fungi trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics, 7(1), 32. doi:https://doi.org/10.1186/1471-2164-7-32.
  • Basu, S., Bose, C., Ojha, N., Das, N., Das, J., Pal, M., & Khurana, S. (2015). Evolution of bacterial and fungal growth media. Bioinformation, 11(4), 182–184. https://doi.org/10.6026/97320630011182
  • Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science Journal, 3(1), 74–80. https://doi.org/10.12944/CRNFSJ.3.1.08
  • BS EN 206. (2014). Concrete—specification, performance, production and conformity. British Standard Institutions.
  • BS EN-1991-1-1 Eurocode 2. (2004). Actions on structures—Part 1-1: General rules and rules for buildings. British Standards Institution.
  • C., Onyelowe, K., M., Ebid, A., Riofrio, A., Baykara, H., Soleymani, A., A., Mahd, H., Jahangir, H., & Ibe, K. (2022). Multi-objective prediction of the mechanical properties and environmental impact appraisals of self-healing concrete for sustainable structures. Sustainability, 14(15), 9573. https://doi.org/10.3390/su14159573
  • Chopra, P., Sharma, R. K., & Kumar, M. (2016). Prediction of compressive strength of concrete using artificial neural network and genetic programming. Hindawi Publishing Corporation Advances in Materials Science and Engineering, 2016, 1–10. 10 https://doi.org/10.1155/2016/7648467
  • De Marchi, L., & Mitchell, L. (2019). Hands-on neural networks: Learn how to build and train your first neural network model using python. Packt Publishing.
  • Dębska, B. (2022). Assessment of the applicability of selected data mining techniques for the classification of mortars containing recycled aggregate. Materials (Basel, Switzerland), 15(22), 8111. https://doi.org/10.3390/ma15228111
  • Erdal, H. I. (2013). Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction. Applied Artificial Intelligence, 26(7), 1689–1697. https://doi.org/10.1016/j.engappai.2013.03.014
  • Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabduljabbar, H., Ostrowski, K. A., Śliwa-Wieczorek, K., Nowobilski, T., & Malazdrewicz, S. (2021). A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials, 14(17), 4934. https://doi.org/10.3390/ma14174934
  • Fl ¨ory, S., & Pottmann, H. (2019). Ruled surfaces for rationalization and design in architecture. In LIFE in: Formation. On Responsive Information and Variations in Architecture, pp. 103–109.
  • Hasanzadeh, A., Vatin, N. I., Hematibahar, M., Kharun, M., & Shooshpasha, I. (2022). Prediction of the mechanical properties of basalt fiber reinforced high-performance concrete using machine learning techniques. Materials (Basel, Switzerland), 15(20), 7165. https://doi.org/10.3390/ma15207165
  • Hematibahar, M., Vatin, N. I., Alaraza, H. A. A., Khalilavi, A., & Kharun, M. (2022). The prediction of compressive strength and compressive stress–strain of basalt fiber reinforced high-performance concrete using classical programming and logistic map algorithm. Materials, 19, 6975. https://doi.org/10.3390/ma15196975
  • Huang, F., & Zhou, S. (2022). Review of lightweight self-healing concrete. Materials, 15(21), 7572. https://doi.org/10.3390/ma15217572
  • Huang, X., Wasouf, M., Sresakoolchai, J., & Kaewunruen, S. (2021). Prediction of healing performance of autogenous healing concrete using machine learning. Materials (Basel, Switzerland), 14(15), 4068. https://doi.org/10.3390/ma14154068
  • Kashyzadeh, K. R., Amiri, N., Ghorban, S., & Souri, K. (2022). Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions. Buildings, 12(4), 438. https://doi.org/10.3390/buildings12040438
  • Khan, M. A., Memon, S. A., Farooq, F., Javed, M. F., Aslam, F., & Alyousef, R. (2021). Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest. Advances in Civil Engineering, 2021, 1–17. https://doi.org/10.1155/2021/6618407
  • Khan, N., Anis Khan, H., Khushnood, R. A., Faraz Bhatti, M., & Ilyas Baig, D. (2023). Self-healing of recycled aggregate fungi concrete using fusarium oxysporum and trichoderma longibrachiatum. Construction and Building Materials, 392, 131910. https://doi.org/10.1016/j.conbuildmat.2023.131910
  • Khorasani, M., Loy, J., Ghasemi, A., Sharabian, E., Leary, M., Mirafzal, H., Cochrane, P., Rolfe, B., & Gibson, L. (2022). Review of Industry 4.0 and additive manufacturing synergy. Rapid Prototyping Journal, 28(8), 1462–1475. https://doi.org/10.1108/RPJ-08-2021-0194
  • Kumar, A., Harish, C. A., Raj Kapoor, N., Mazin, A. M., Kumar, K., Majumdar, A., & Thinnukool, O. (2022). Compressive strength prediction of lightweight concrete: Machine learning models. Sustainability, 14(4), 2404. https://doi.org/10.3390/su14042404
  • Luo, J., Chen, X., Crump, J., Zhou, H. G., Davies, D., Zhou, G., Zhang, N., & Jin, C. (2018). Interactions of fungi with concrete: significant importance for bio-based self-healing concrete. Construction and Building Materials, 164, 275–285. https://doi.org/10.1016/j.conbuildmat.2017.12.233
  • Mahmoodi, S., & Sadeghian, P. (2019 Self-healing concrete: A review of recent research developments and existing research gaps [Paper presentation]. 7th International Conference on Engineering Mechanics and Materials, CSCE Annual Conference.
  • Nguyen, K. T., Nguyen, Q. D., Le, T. A., Shin, J., & Lee, K. (2020). Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches. Construction and Building Materials, 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581
  • Parashar, A. (2017). International depository authority and its role in microorganism’s deposition. Journal of Clinical and Diagnostic Research: JCDR, 11(8), DE01–DE06. https://doi.org/10.7860/JCDR/2017/29077.10408
  • Peng, X., Zhuang, Z., & Yang, Q. (2022). Predictive modeling of compressive strength for concrete at super early age. Materials (Basel, Switzerland), 15(14), 4914. https://doi.org/10.3390/ma15144914
  • Salem, G. G., Galishnikova, V. V., Elroba, S. M., Vatin, N. I., & Kharun, M. (2022). Finite element analysis of self-healing concrete beams using bacteria. Materials, 15(21), 7506. https://doi.org/10.3390/ma15217506
  • Sami Ullah, H., Khushnood, R. A., Farooq, F., Ahmad, J., Vatin, N. I., & Zakaria Ewais, D. Y. (2022). Prediction of compressive strength of sustainable foam concrete using individual and ensemble machine learning approaches. Materials (Basel, Switzerland), 15(9), 3166. https://doi.org/10.3390/ma15093166
  • Shahmansouri, A. A., Yazdani, M., Hosseini, M., Akbarzadeh Bengar, H., & Farrokh Ghatte, H. (2022). The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Construction and Building Materials, 317, 125876. https://doi.org/10.1016/j.conbuildmat.2021.125876
  • Spencer, B., Alfandi, O., & Al-Obeidat, F. (2018). A refinement of lasso regression applied to temperature forecasting. Procedia Computer Science, 130, 728–735. https://doi.org/10.1016/j.procs.2018.04.127
  • Su, Y., Zheng, T., & Qian, C. (2021). Application potential of bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Construction and Building Materials, 273, 121740. https://doi.org/10.1016/j.conbuildmat.2020.121740
  • Topçu, I. B., & Sarıdemir, M. (2007). Prediction of properties of waste AAC aggregate concrete using artificial neural network. Computational Materials Science, 41(1), 117–125. https://doi.org/10.1016/j.commatsci.2007.03.010
  • Wang, W., Chen, S., Yang, Z., Ren, J., Zhang, X., & Xing, F. (2021). Self-healing concrete incorporating mineral additives and encapsulated lightweight aggregates: Preparation and application. Construction and Building Materials, 301, 124119. https://doi.org/10.1016/j.conbuildmat.2021.124119
  • Yang, D., Yan, C., Liu, S., Jia, Z., & Wang, C. (2022). Prediction of concrete compressive strength in saline soil environments. Materials (Basel, Switzerland), 15(13), 4663, https://doi.org/10.3390/ma15134663
  • Zhang, X., Fan, X., Li, M., Samia, A., & (Bill) Yu, X. (2021). Study on the behaviors of fungi-concrete surface interactions and theoretical assessment of its potentials for durable concrete with fungal-mediated self-healing. Journal of Cleaner Production, 292, 125870. https://doi.org/10.1016/j.jclepro.2021.125870
  • Zhao, J., Csetenyi, L., & Gadd, G. M. (2022). Fungal-induced CaCO3 and SrCO3 precipitation: A potential strategy for bioprotection of concrete. The Science of the Total Environment, 816, 151501. https://doi.org/10.1016/j.scitotenv.2021.151501
  • Zheng, X., Peng, X., Zhao, J., & Wang, X. (2022). Trajectory prediction of marine moving target using deep neural networks with trajectory data. Applied Sciences, 12(23), 11905. https://doi.org/10.3390/app122311905
  • Zhuang, X., & Zhou, S. (2019). The prediction of self-healing capacity of bacteria-based concrete using machine learning approaches. Computers, Materials & Continua, 59(1), 57–77. https://doi.org/10.32604/cmc.2019.04589