519
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Prediction of groundwater drawdown and quality at Kyzylzharma well field in the arid Syr Darya Basin, Kazakhstan

, , , & ORCID Icon
Article: 2307194 | Received 07 Aug 2023, Accepted 15 Jan 2024, Published online: 27 Jan 2024

References

  • AquaChem. (2021). AquaChem 10.0. Water quality analysis software. Users’ Manual.
  • Absametov, M., Sagin, J., Adenova, D., Smolyar, V., & Murtazin, E. (2023). Assessment of the groundwater for household and drinking purposes in central Kazakhstan. Groundwater for Sustainable Development, 21, 100907. https://doi.org/10.1016/j.gsd.2023.100907
  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1–2), 55–62. https://doi.org/10.1016/j.geoderma.2011.04.001
  • Al-Katheeri, E. S. (2008). Towards the establishment of water management in Abu Dhabi Emirate. Water Resources Management, 22(2), 205–215. https://doi.org/10.1007/s11269-006-9151-y
  • APHA. (1995). American public health association, standard methods: For the examination of water and wastewater. APHA, AWWA, WEF/1995, APHA Publication.
  • Bear, J., & Cheng, A. H. D. (2010). Modeling groundwater flow and contaminant transport (Vol. 23). Springer.
  • Beck, H., Zimmermann, N., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 180214. https://doi.org/10.1038/sdata.2018.214
  • Biswas, A., Nath, B., Bhattacharya, P., Halder, D., Kundu, A. K., Mandal, U., Mukherjee, A., Chatterjee, D., Mörth, C. M., & Jacks, G. (2012). hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: Consequences for sustainable drinking water supply. The Science of the Total Environment, 431, 402–412. https://doi.org/10.1016/j.scitotenv.2012.05.031
  • Borevsky, B. V. (1988). Features of hydrogeological research in the exploration of fresh groundwater deposits to solve environmental problems. Study and Assessment of Operational Resources of Drinking and Industrial Waters, Proceedings of VSEGINGEO (pp. 19–25). Vyshcha shkola, Kiev.
  • Bundschuh, J., & César Suárez, A. M. (2019). Introduction to the numerical modeling of groundwater and geothermal systems: Fundamentals of mass, energy and solute transport in poroelastic rocks. CRC Press.
  • CACCC. (2023). Central Asia Climate Change Conference (CACCC 2023), Dushanbe City, Tajikistan, May 16–17, 2023. Accessed on 16 October, 2023. https://carececo.org/en/main/activity/mettings/cakik-2023/.
  • Chen, W., Hou, Z., Wu, L., Liang, Y., & Wei, C. (2010). Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China. Agricultural Water Management, 97(12), 2001–2008. https://doi.org/10.1016/j.agwat.2010.03.008
  • Chynybaeva, B. (2023). The water crisis in Central Asia – how to find solutions? Climate Action Network CAN EECCA 17 June 2023. Accessed on 12 October 2012. https://caneecca.org/en/the-water-crisis-in-central-asia-how-to-find-solutions/#:∼:text=Central%20Asia%20is%20facing%20a,chalenges%20for%20the%20region’s%20countries.
  • Condon, L. E., Kollet, S., Bierkens, M. F., Fogg, G. E., Maxwell, R. M., Hill, M. C., Hendricks Fransen, H.-J., Verhoef, A., Van Loon, A. F., Sulis, M., & Abesser, C. (2021). Global groundwater modeling and monitoring: Opportunities and challenges. Water Resources Research, 57(12), e2020WR029500. https://doi.org/10.1029/2020WR029500
  • DeZuane, J. (1997). Handbook of drinking water quality. John Wiley & Sons.
  • Doherty, J. E., & Hunt, R. J. (2010). Approaches to highly parameterized inversion: A guide to using PEST for groundwater-model calibration. US Department of the Interior, US Geological Survey.
  • Dukhovny, V., Umarov, P., Yakubov, H., & Madramootoo, C. A. (2007). Drainage in the Aral Sea basin. Irrigation and Drainage, 56(S1), S91–S100. https://doi.org/10.1002/ird.367
  • Durov, S. A. (1948). Natural waters and graphic representation of their composition. Proceedings of the Dokl Akad Nauk SSSR (Vol. 59, pp. 87–90). accessed on 15 November 2022. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.spx?ReferenceID=1742074.
  • Dvoretsky, S. I., Muromtsev, Y. L., & Pogonin, V. A. (2009). Modeling of systems (p. 320). Academia Publishing Center.
  • Eid, M. H., Elbagory, M., Tamma, A. A., Gad, M., Elsayed, S., Hussein, H., Moghanm, F. S., Omara, A. E.-D., Kovács, A., & Péter, S. (2023). Evaluation of groundwater quality for irrigation in deep aquifers using multiple graphical and indexing approaches supported with machine learning models and GIS techniques, Souf Valley, Algeria. Water, 15(1), 182. https://doi.org/10.3390/w15010182
  • Geng, C., Lu, D., Qian, J., Xu, C., Li, D., Ou, J., & Ye, Z. (2023). A review on process-based groundwater vulnerability assessment methods. Processes, 11(6), 1610. https://doi.org/10.3390/pr11061610
  • GMS. (2021). GMS user manual (v10.3), groundwater modeling system GMS 6. tutorials (1–4). Aquaveo. http://gmsdocs.aquaveo.com/GMS_User_Manual_v10.3.pdf.
  • Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: The ground-water flow process (Vol. 6). US Department of the Interior, US Geological Survey.
  • Jacks, G., Sefe, F., Carling, M., Hammar, M., & Letsamao, P. (1999). Tentative nitrogen budget for pit latrines-Eastern Botswana. Environmental Geology, 38(3), 199–203. https://doi.org/10.1007/s002540050415
  • Kokimova, A. (2019). [Developing a transboundary groundwater model in the water scarce region of Central Asia: A case study of the Pretashkent Transboundary Aquifer] [MSc Thesis], WSE-GW.19-03]. IHE-Delft. Accessed on 16 October 2023 at https://www.un-igrac.org/sites/default/files/resources/files/WSE-GW.19-03-Ainur%20Kokimova_updated.pdf.
  • Konikow, L. F., & Reilly, T. E. (1999). Seawater intrusion in the United States. Seawater intrusion in coastal aquifers: Concepts, methods and practices (pp. 463–506). Springer.
  • Köppen, W. (1936). Das geographische system der klimate (pp. 1–44). Gebrüder Borntraeger.
  • Kulmatov, R. (2014). Problems of sustainable use and management of water and land resources in Uzbekistan. Journal of Water Resource and Protection, 06(01), 35–42. https://doi.org/10.4236/jwarp.2014.61006
  • Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., & Provost, A. M. (2017). Documentation for the MODFLOW 6 groundwater flow model (No. 6-A55). US Geological Survey.
  • Liu, Y., Wang, P., Ruan, H., Wang, T., Yu, J., Cheng, Y., & Kulmatov, R. (2020). Sustainable use of groundwater resources in the transboundary aquifers of the five Central Asian Countries: Challenges and perspectives. Water, 12(8), 2101. https://doi.org/10.3390/w12082101
  • Liu, Z., Huang, Y., Liu, T., Li, J., Xing, W., Akmalov, S., Peng, J., Pan, X., Guo, C., & Duan, Y. (2020). Water balance analysis based on a quantitative evapotranspiration inversion in the Nukus Irrigation Area, Lower Amu River Basin. Remote Sensing, 12(14), 2317. https://doi.org/10.3390/rs12142317
  • Lobanova, A., Didovets, I., Menz, C., Umirbekov, A., Babagalieva, Z., Hattermann, F., & Krysanova, V. (2021). Rapid assessment of climate risks for irrigated agriculture in two river basins in the Aral Sea Basin. Agricultural Water Management, 243, 106381. https://doi.org/10.1016/j.agwat.2020.106381
  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., DiXIt, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766. https://doi.org/10.1038/ngeo2791
  • Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Science Reviews, 185, 901–927. https://doi.org/10.1016/j.earscirev.2018.08.009
  • Malekzadeh, M., Kardar, S., & Shabanlou, S. (2019). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development, 9, 100279. https://doi.org/10.1016/j.gsd.2019.100279
  • Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401–428. https://doi.org/10.2475/ajs.287.5.401
  • Micklin, P., & Williams, W. D. (1996). The aral sea basin (Vol. 12). Springer-Verlag, https://doi.org/10.1007/978-3-642-61182-7.
  • Micklin, P. (2016). The future Aral Sea: Hope and despair. Environmental Earth Sciences, 75(9), 1–15. https://doi.org/10.1007/s12665-016-5614-5
  • Moerlins, J. E., Khankhasayev, M. K., Leitman, S. F., & Makhmudov, E. J. (2008). Transboundary water resources: A foundation for regional stability in central Asia. Springer. https://doi.org/10.1007/978-1-4020-6736-5.
  • Mukherjee, A., Scanlon, B., Aureli, A., Langan, S., Guo, H., & McKenzie, A. (2020). Global groundwater: Source, scarcity, sustainability, security and solutions (p. 637). Elsevier.
  • Musin, R., & Khramchenkov, M. G. (2019). Introduction into numerical modeling of geological filtration: Educational-methodical manual (p. 41). Kazan University Publishing House.
  • Niswonger, R. G., Panday, S., & Ibaraki, M. (2011). MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geological Survey Techniques and Methods, 6(A37), 44. https://pubs.usgs.gov/tm/tm6a37/pdf/tm6a37.pdf
  • Nsabimana, A., Li, P., Wang, Y., & Alam, S. M. K. (2022). Variation and multi-time series prediction of total hardness in groundwater of the Guanzhong Plain (China) using grey Markov model. Environmental Monitoring and Assessment, 194(12), 899. https://doi.org/10.1007/s10661-022-10585-9
  • Ostrovsky, V. N. (2007). Comparative analysis of groundwater formation in arid and super-arid deserts (with examples from Central Asia and northeastern Arabian Peninsula). Hydrogeology Journal, 15(4), 759–771. https://doi.org/10.1007/s10040-007-0181-1
  • Pan, X., Wang, W., Liu, T., Bao, A., Chen, X., Akmalov, S., De Maeyer, P., & Van de Voorde, P. (2023). Modeling the effects of improved irrigation methods in a groundwater system: A case study from the Amu Darya Delta, Uzbekistan. Journal of Hydrology, 625(Part A), 129987. https://doi.org/10.1016/j.jhydrol.2023.129987
  • Panichkin, V., & Miroshnichenko, O. (2014). Mathematical model creation methods of Syrdarinski artesian basin hydrogeological conditions for the solution of groundwater resources conservation tasks. Proceedings of National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2, 91–97.
  • Panichkin, V., Satpaev, A., Miroshnichenko, O., Trushel, L., & Zakharova, N. (2011). Mathematical modeling methods utilization for the groundwater resources estimation of Kyzylzharminski deposit. Geology and Conservation of Mineral Resources, 3, 57–62.
  • Panichkin, V., Sagin, J., Miroshnichenko, O., Trushel, L., Zakharova, N., Yerikuly, Z., & LiviNSkiy, Y. (2017). Assessment and forecasting of the subsurface drain of the Aral Sea, Central Asia. International Journal of Environmental Studies, 74(2), 202–213. https://doi.org/10.1080/00207233.2017.1280321
  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions American Geophysical Union, 25, 914. https://doi.org/10.1029/TR025i006p00914
  • Rafikov, V., & Gulnora, M. (2014). Forecasting changes of hydrological and hydrochemical conditions in the Aral Sea. Geodesy and Geodynamics, 5(3), 55–58. https://doi.org/10.3724/SP.J.1246.2014.03055
  • RGP. (2023). “Kazhydromet” Open source meteorological database; Kyzylorda region. Accessed on December 10 2022. https://www.kazhydromet.kz/uploads/files/63/file_kk/oblast.pdf?cache=1588242938.
  • Rosenberry, D. O., Lewandowski, J., Meinikmann, K., & Nützmann, G. (2015). Groundwater – the disregarded component in lake water and nutrient budgets. Part 1: Effects of groundwater on hydrology. Hydrological Processes, 29(13), 2895–2921. https://doi.org/10.1002/hyp.v29.13
  • Sagin, J., Adenova, D., Tolepbayeva, A., & Poryadin, V. (2017). Underground water resources in Kazakhstan. International Journal of Environmental Studies, 74(3), 386–398. https://doi.org/10.1080/00207233.2017.1288059
  • Satke, R. (2021). Central Asian drought highlights water vulnerability. Prevention web, 12 July 2021. Accessed on 10 October 2023. https://www.preventionweb.net/quick/16398.
  • Schettler, G., Oberhänsli, H., Stulina, G., Mavlonov, A. A., & Naumann, R. (2013). Hydrochemical water evolution in the Aral Sea Basin. Part I: Unconfined groundwater of the Amu Darya delta – interactions with surface waters. Journal of Hydrology, 495, 267–284. https://doi.org/10.1016/j.jhydrol.2013.03.044
  • Shapiro, S., Tsay, S., Bochkarev, A., Kalmykova, N., Sydykov, Z., Dzhakelov, A., Smolyar, V., Ibragimov, Y., Vinnikova, T., Zolotarev, V., & Kim, E. (1992). Syrdarya Artesian Basin. Mathematical modeling of groundwater resources in the conditions of technogenesis. Almaty: Gylym.
  • Smolyar, V. A., Burov, B. V., & Mustafayev, S. (2012). Vodnye resursy Kazahstana: Ocenka, prognoz, upravlenie: T. VIII: Resursy podzemnyh vod Kazahstana, 21-m tome (Water resources of Kazakhstan: assessment, prognosis, management: T. VIII: Groundwater resources of Kazakhstan) (p. 634). VITBRAND LTD. (in Russian) Almaty.
  • Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain - a case study from Mettur Taluk, Salem District, Tamil Nadu, India. Journal of Earth System Science, 117(1), 49–58. https://doi.org/10.1007/s12040-008-0012-3
  • Su, F., Wu, J., & He, S. (2019). Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an City, China. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 158–175. https://doi.org/10.1080/10807039.2019.1568860
  • Su, Z., Wu, J., He, X., & Elumalai, V. (2020). Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using grey markov model in Yinchuan area of Northwest China. Exposure and Health, 12(3), 447–468. https://doi.org/10.1007/s12403-020-00355-8
  • Syr Darya Artesian Basin. (1992). Mathematical modeling of groundwater resources under conditions of technogenesis (p. 200). Gylym.
  • Tang, C., Chen, J., Shindo, S., Sakura, Y., Zhang, W., & Shen, Y. (2004). Assessment of groundwater contamination by nitrates associated with wastewater irrigation: A case study in Shijiazhuang region, China. Hydrological Processes, 18(12), 2303–2312. https://doi.org/10.1002/hyp.5531
  • Torkashvand, M., Neshat, A., Javadi, S., & Pradhan, B. (2021). New hybrid evolutionary algorithm for optimizing index-based groundwater vulnerability assessment method. Journal of Hydrology, 598, 126446. https://doi.org/10.1016/j.jhydrol.2021.126446
  • Trushel, L. (1993). Modelling of the hydrogeological conditions of the central Kzylkum artesian basin for the assessment resource and quality of groundwater, almaty, candidate of geological-mineralogical sciences thesis. Institute of Hydrogeology and Hydrophysics of Kazakh Academy of Sciences.
  • UN. (2023). Indicator 6.5.2 “Proportion of transboundary basin area with an operational arrangement for water cooperation” UNECE monitoring methodology. United Nations, UN Water. Accessed on 14 October, 2012. https://www.unwater.org/our-work/integrated-monitoring-initiative-sdg-6/indicator-652-proportion-transboundary-basin-area.
  • Veselov, V. V., & Panichkin, V. (2004). Geoinformation-mathematical modeling of hydrogeological conditions of the Eastern Aral Sea region (p. 428). Complex LLP.
  • Wang, X., Chen, Y., Fang, G., Li, Z., & Liu, Y. (2022). The growing water crisis in Central Asia and the driving forces behind it. Journal of Cleaner Production, 378, 134574. https://doi.org/10.1016/j.jclepro.2022.134574
  • WHO. (2017). World Health Organization, guidelines for drinking‑water quality, fourth edition incorporating the first addendum (4th ed.). WHO Press.
  • Wikipedia. (2023). Dissolution of the Soviet Union. Accessed on 12 October 2023. https://en.wikipedia.org/wiki/Dissolution_of_the_Soviet_Union.
  • World Bank. (2019). The world bank North aral sea development and revitalization project (P170187) project information document (PID) concept stage, prepared/updated: 04-Dec-2019, Report No: PIDC26485, https://view.officeapps.live.com/op/view.aspx?src=https%3A//documents1.worldbank.org/curated/en/572601576269468326/Concept-Project-Information-Document-PID-North-Aral-Sea-Development-and-Revitalization-Project-P170187.docx&wdOrigin=BROWSELINK.
  • Zektser, I. S. (2006). Groundwater as a component of the environment. Geology and ecosystems: International Union of Geological Sciences (IUGS) commission on geological sciences for environmental planning (COGEOENVIRONMENT) commission on geosciences for environmental management (GEM) (pp. 91–105). Springer US.
  • Zektser, I. S., & Everett, L. G. (2001). Groundwater and the environment, applications for the global community (p. 192). CRC Press.
  • Zhou, Y., & Li, W. (2011). A review of regional groundwater flow modeling. Geoscience Frontiers, 2(2), 205–214. https://doi.org/10.1016/j.gsf.2011.03.003