590
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

The potential of biochar-slurry fuel from agricultural wastes in Indonesia

ORCID Icon, , , &
Article: 2307201 | Received 11 Jun 2023, Accepted 15 Jan 2024, Published online: 30 Jan 2024

References

  • Abdullah, H., Mediaswanti, K. A., & Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees. Energy & Fuels, 24(3), 1972–1979. https://doi.org/10.1021/ef901435f
  • Adorna, J., Jr, Borines, M., Dang, V. D., & Doong, R.-A. (2020). Coconut shell derived activated biochar–manganese dioxide nanocomposites for high performance capacitive deionization. Desalination, 492, 114602. https://doi.org/10.1016/j.desal.2020.114602
  • Ajien, A., Idris, J., Md Sofwan, N., Husen, R., & Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 41(1), 37–51. https://doi.org/10.1177/0734242X221127167
  • Alhashimi, H. A., & Aktas, C. B. (2017). Life cycle environmental and economic performance of biochar compared with activated carbon: A meta-analysis. Resources, Conservation and Recycling. 118, 13–26. https://doi.org/10.1016/j.resconrec.2016.11.016
  • Anand, A., Kumar Sakhiya, A., Aier, I., Kakati, U., Kumar, V., & Kaushal, P. (2022). Assessment of electricity generation potential from biochar in Northern India. Energy and Climate Change, 3, 100068. https://doi.org/10.1016/j.egycc.2021.100068
  • Anjali, T. B. M., Anand, K. B., Akhilesh, P. K., Madhuraj, R., Kumar, C. S., & A., Waran. (2022). Physico-chemical characterization of biochar from selected ligno-cellulosic biomass for the sustainable utilization. International Journal of Applied Biology, 6(2), 186–212.
  • Atienza, A. H., Orcullo, J., Salamat, C., & Wassmer, C. (2020). Coconut shell feedstock based top lit updraft gasifier for biochar and heat cogeneration. Journal of Physics: Conference Series, 1519(1), 012014. https://doi.org/10.1088/1742-6596/1519/1/012014
  • Baharum, N. A., Nasir, H. M., Ishak, M. Y., Isa, N. M., Hassan, M. A., & Aris, A. Z. (2020). Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arabian Journal of Chemistry, 13(7), 6106–6121. https://doi.org/10.1016/j.arabjc.2020.05.011
  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews, 96, 296–305. https://doi.org/10.1016/j.rser.2018.07.040
  • Behera, B., Mari Selvam, S., Dey, B., & Balasubramanian, P. (2020). Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology, 310(April), 123392. https://doi.org/10.1016/j.biortech.2020.123392
  • Belonogov, M., Dorokhov, V., Glushkov, D., Kuznechenkova, D., & Romanov, D. (2023). Combustion characteristics of coal-water slurry droplets in high-temperature air with the addition of syngas. Energies, 16(8), 3304. https://doi.org/10.3390/en16083304
  • Blanco-Vargas, A., Chacón-Buitrago, M. A., Quintero-Duque, M. C., Poutou-Piñales, R. A., Díaz-Ariza, L. A., Devia-Castillo, C. A., Castillo-Carvajal, L. C., Toledo-Aranda, D., da Conceição de Matos, C., Olaya-González, W., Ramos-Monroy, O., & Pedroza-Rodríguez, A. M. (2022). Production of pine sawdust biochar supporting phosphate-solubilizing bacteria as an alternative bioinoculant in Allium Cepa L., culture. Scientific Reports, 12(1), 12815. https://doi.org/10.1038/s41598-022-17106-1
  • Budhijanto, W., Ariyanto, T., & Cahyono, R. B. (2019). Bioenergy potential from agricultural residues and industrial wastes in Indonesia. Journal of Smart Processing, 8(6), 253–259. https://doi.org/10.7791/jspmee.8.253
  • Carvalho, D. J., Veiga, J. P. S., & Bizzo, W. A. (2017). Analysis of energy consumption in three systems for collecting sugarcane straw for use in power generation. Energy, 119, 178–187. https://doi.org/10.1016/j.energy.2016.12.067
  • Chen, Y.-H., Chang, C.-C., Chang, C.-Y., Yuan, M.-H., Ji, D.-R., Shie, J.-L., Lee, C.-H., Chen, Y.-H., Chang, W.-R., Yang, T.-Y., Hsu, T.-C., Huang, M., Wu, C.-H., Lin, F.-C., & Ko, C.-H. (2017). Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal. Journal of Analytical and Applied Pyrolysis, 126, 315–322. https://doi.org/10.1016/j.jaap.2017.05.015
  • Chen, H., Xu, H., Zhu, H., Yan, S., Zhang, S., Zhang, H., Guo, X., Hu, X., & Gao, W. (2024). A review on bioslurry fuels derived from bio-oil and biochar: Preparation, fuel properties and application. Fuel, 355, 129283. https://doi.org/10.1016/j.fuel.2023.129283
  • Chiappero, M., Norouzi, O., Hu, M., Demichelis, F., Berruti, F., Di Maria, F., Mašek, O., & Fiore, S. (2020). Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, 131(June), 110037. https://doi.org/10.1016/j.rser.2020.110037
  • Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. GCB Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030
  • De, S., & Assadi, M. (2009). Impact of cofiring biomass with coal in power plants–A techno-economic assessment. Biomass and Bioenergy, 33(2), 283–293. https://doi.org/10.1016/j.biombioe.07.005
  • Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. A. D., Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One, 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
  • Enaime, G., Baçaoui, A., Yaacoubi, A., & Lübken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Applied Sciences (Switzerland), 10(10), 3492. https://doi.org/10.3390/app10103492
  • Feng, C., & Wu, H. (2018). Synergy on particulate matter emission during the combustion of bio-oil/biochar slurry (bioslurry). Fuel, 214, 546–553. https://doi.org/10.1016/j.fuel.2017.11.057
  • Fuertes, A. B., Arbestain, M. C., Sevilla, M., Maciá-Agulló, J. A., Fiol, S., López, R., Smernik, R. J., Aitkenhead, W. P., Arce, F., & Macías, F. (2010). “Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover.” Australian Journal of Soil Research, 48(7), 618–626. https://doi.org/10.1071/SR10010
  • Gonzaga, M. I. S., Mackowiak, C., Quintao de Almeida, A., Ilmar Tinel de Carvalho Junior, J., & Andrade, K. R. (2018). Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea Mays L.) growth and nutrition. Catena, 162(October 2017), 414–420. https://doi.org/10.1016/j.catena.2017.10.018
  • Goswami, M., Pant, G., Mansotra, D. K., Sharma, S., & Joshi, P. C. (2021). Biochar: A carbon negative technology for combating climate change. In Pant, D., Kumar Nadda, A., Pant, K.K., & Agarwal, A.K. (Eds.), Advances in Carbon Capture and Utilization. Energy, Environment, and Sustainability. Springer. https://doi.org/10.1007/978-981-16-0638-0_11
  • Guida, M. Y., & Hannioui, A. (2017). Properties of bio-oil and bio-char produced by sugar cane bagasse pyrolysis in a stainless steel tubular reactor. Progress in Agricultural Engineering Sciences, 13(1), 13–33. https://doi.org/10.1556/446.13.2017.2
  • Hambali, E., & Rivai, M. (2017). The potential of palm oil waste biomass in Indonesia in 2020 and 2030. IOP Conference Series: Earth and Environmental Science, 65, 012050. https://doi.org/10.1088/1755-1315/65/1/012050
  • Huang, Y. F., Chiueh, P. T., & Lo, S. L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26(3), 103–109. https://doi.org/10.1016/j.serj.2016.04.012
  • Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 106(9), 4044–4098. https://doi.org/10.1021/cr068360d
  • Illankoon, W. A. M. A. N., Milanese, C., Karunarathna Karunarathna, A., Alahakoon, A. M. Y. W., Rathnasiri, P. G., Medina-Llamas, M., Collivignarelli, M. C., & Sorlini, S. (2023). Development of a dual-chamber pyrolizer for biochar production from agricultural waste in Sri Lanka. Energies, 16(4), 1819. https://doi.org/10.3390/en16041819
  • Jones, D. L., Magthab, E. A., Gleeson, D. B., Hill, P. W., Sánchez-Rodríguez, A. R., Roberts, P., Ge, T., & Murphy, D. V. (2018). Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 117(June 2016), 72–82. https://doi.org/10.1016/j.soilbio.2017.10.024
  • Kabir Ahmad, R., Sulaiman, S. A., Yusup, S., Dol, S. S., Inayat, M., & Umar, H. A. (2022). Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Engineering Journal, 13(1), 101499. https://doi.org/10.1016/j.asej.2021.05.013
  • Khanmohammadi, Z., Afyuni, M., & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 33(3), 275–283. https://doi.org/10.1177/0734242X14565210
  • Khuenkaeo, N., & Tippayawong, N. (2020). Production and characterization of bio-oil and biochar from ablative pyrolysis of lignocellulosic biomass residues. Chemical Engineering Communications, 207(2), 153–160. https://doi.org/10.1080/00986445.2019.1574769
  • Kumar, A., Bhattacharya, T., Mukherjee, S. S., Mukherjee., & B., Sarkar. (2022). A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar, 4(22), 1–23. https://doi.org/10.1007/s42773-022-00148-z
  • Kumar, A., Bhattacharya, T., Shaikh, W. A., Roy, A., Mukherjee, S., & Kumar, M. (2021). Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Environmental Research, 200, 111758. https://doi.org/10.1016/j.envres.2021.111758
  • Laird, D. A., Brown, R. C., Amonette, J. E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio‐oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547–562. https://doi.org/10.1002/bbb.169
  • Lee, J., Sarmah, A. K., & Kwon, E. E. (2018). Production and formation of biochar. In Biochar from biomass and waste: Fundamentals and applications (pp. 3–18). Elsevier. https://doi.org/10.1016/B978-0-12-811729-3.00001-7
  • Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  • Liu, P., Zhu, M., Zhang, Z., Leong, Y. K., Zhang, Y., & Zhang, D. (2017). Rheological behaviour and stability characteristics of biochar-water slurry fuels: Effect of biochar particle size and size distribution. Fuel Processing Technology, 156, 27–32. https://doi.org/10.1016/j.fuproc.2016.09.030
  • Mahidin, E., Zaki, M., Hamdani, M., Mamat Hisbullah, R., & Susanto, H. (2020). Potential and utilization of biomass for heat energy in Indonesia: A review. International Journal of Scientific & Technology Research, 2(10), 331–344.
  • Mamaní, A., Ramírez, N., Deiana, C., Giménez, M., & Sardella, F. (2019). Highly microporous sorbents from lignocellulosic biomass: Different activation routes and their application to dyes adsorption. Journal of Environmental Chemical Engineering, 7(5), 103148. https://doi.org/10.1016/j.jece.2019.103148
  • Manfred, R. K. (1986). Coal-water slurry: A status report. Energy, 11(11–12), 1157–1162. https://doi.org/10.1016/0360-5442(86)90052-6
  • McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83(1), 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3
  • Mielke, K. C., Laube, A. F. S., Guimarães, T., Brochado, M. G. D. S., Medeiros, B. A. D. P., & Mendes, K. F. (2022). Pyrolysis temperature and application rate of sugarcane straw biochar influence sorption and desorption of metribuzin and soil chemical properties. Processes, 10(10), 1924. https://doi.org/10.3390/pr10101924
  • Mohapatra, S. S., Rath, M. K., Singh, R. K., & Murugan, S. (2021). Performance and emission analysis of co-pyrolytic oil obtained from sugarcane bagasse and polystyrene in a CI engine. Fuel, 298, 120813. https://doi.org/10.1016/j.fuel.2021.120813
  • Mukherjee, S., & Kumar, M. (2021). Cycling of black carbon and black nitrogen in the hydro-geosphere: Insights on the paradigm, pathway, and processes. Science of the Total Environment, 770, 144711. https://doi.org/10.1016/j.scitotenv.2020.144711
  • Mukherjee, S., Weihermueller, L., Tappe, W., Vereecken, H., & Burauel, P. (2016). Microbial respiration of biochar- and digestate-based mixtures. Biology and Fertility of Soils, 52(2), 151–164. https://doi.org/10.1007/s00374-015-1060-x
  • Nazir, A., Laila, Um-E., Bareen, Firdaus-E., Hameed, E., & Shafiq, M. (2021). Sustainable management of peanut shell through biochar and its application as soil ameliorant. Sustainability, 13(24), 13796. https://doi.org/10.3390/su132413796
  • Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., & Sederoff, R. (2010). Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiology, 154(2), 555–561. PMID: 20921184; PMCID: PMC2949025. https://doi.org/10.1104/pp.110.161281
  • Nunes, L. Jr. (2020). Potential of coal–water slurries as an alternative fuel source during the transition period for the decarbonization of energy production: A review. Applied Sciences, 10(7), 2470. https://doi.org/10.3390/app10072470
  • Nuryana, D., Alim, M. F. R., Yahayu, M., Ahmad, M. A., Sulong, R. S. R., Aziz, M. F. S. A., Prasetiawan, H., Zakaria, Z. A., & Kusumaningtyas, R. D. (2020). Methylene blue removal using coconut shell biochar synthesized through microwave-assisted pyrolysis. Jurnal Teknologi, 82(5), 31–41. https://doi.org/10.11113/jt.v82.14359
  • Pranoto, B., Pandin, M., Fithri, S. R., & Nasution, S. (2013). Map of agricultural and forestry biomass waste potential as a database for renewable energy development. Ketenagalistrikan Dan Energi Terbarukan, 12(2), 123–130. [in Bahasa Indonesia]
  • Rasi, S., Kilpeläinen, P., Rasa, K., Korpinen, R., Raitanen, J.-E., Vainio, M., Kitunen, V., Pulkkinen, H., & Jyske, T. (2019). Cascade processing of softwood bark with hot water extraction, pyrolysis and anaerobic digestion. Bioresource Technology, 292, 121893. https://doi.org/10.1016/j.biortech.2019.121893
  • Rey, J. R. C., Pacheco, J. J. T., da Cruz Tarelho, L. A., Silva, V., Cardoso, J. S., Silveira, J. L., & Tuna, C. E. (2021). Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry. Renewable Energy, 178, 318–333. https://doi.org/10.1016/j.renene.2021.06.053
  • Rhofita, E. I., Rachmat, R., Mayer, M., & Montastruc, L. (2022). An energy potential estimation of rice residue in Indonesia: A case study in East Java. IOP Conference Series: Earth and Environmental Science, 1024(1), 012029. https://doi.org/10.1088/1755-1315/1024/1/012029
  • Richardson, Y., Drobek, M., Julbe, A., Blin, J., & Pinta, F. (2015). Biomass gasification to produce syngas. In Recent advances in thermo-chemical conversion of biomass (pp. 213–250). Elsevier. https://doi.org/10.1016/B978-0-444-63289-0.00008-9
  • Romero Millán, L. M., Sierra Vargas, F. E., & Nzihou, A. (2019). Steam gasification behavior of tropical agrowaste: A new modeling approach based on the inorganic composition. Fuel, 235(December 2017), 45–53. https://doi.org/10.1016/j.fuel.2018.07.053
  • Rout, T., Pradhan, D., Singh, R. K., & Kumari, N. (2016). Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering, 4(3), 3696–3705. https://doi.org/10.1016/j.jece.2016.02.024
  • Saad Naggar, H., El-Sattar, A. A., & Mansour, A. E.-A M. (2018). A novel control strategy for grid connected hybrid renewable energy systems using improved particle swarm optimization. Ain Shams Engineering Journal, 9(4), 2195–2214. https://doi.org/10.1016/j.asej.2017.03.009
  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1–15. https://doi.org/10.1186/s40643-017-0187-z
  • Sahoo, D., & Remya, N. (2022). Influence of operating parameters on the microwave pyrolysis of rice husk: Biochar yield, energy yield, and property of biochar. Biomass Conversion and Biorefinery, 12(8), 3447–3456. https://doi.org/10.1007/s13399-020-00914-8
  • Sakai, T., Sadakata, M., & Saito, M. (1985). Single droplet combustion of coal-methanol slurry. Fuel, 64(2), 163–166. https://doi.org/10.1016/0016-2361(85)90210-8
  • Samsudin, M. H., Hassan, M. A., Idris, J., Ramli, N., Mohd Yusoff, M. Z., Ibrahim, I., Othman, M. R., Ali, A. A. M., & Shirai, Y. (2019). A one-step self-sustained low temperature carbonization of coconut shell biomass produced a high specific surface area biochar-derived nano-adsorbent. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 37(5), 551–555. https://doi.org/10.1177/0734242X18823953
  • Sari, R. M., Gea, S., Wirjosentono, B., Hendrana, S., & Hutapea, Y. A. (2020). Improving quality and yield production of coconut shell charcoal through a modified pyrolysis reactor with tar scrubber to reduce smoke pollution. Polish Journal of Environmental Studies, 29(2), 1815–1824. https://doi.org/10.15244/pjoes/110582
  • Setyawan, H. Y., Safira, L., Mulyarto, A. R., Wijana, S., & Pranowo, D. (2023). The effect of pyrolysis temperature and ball-milling duration on characteristics of micro bio-char derived from oil palm empty fruit bunches. Sustainable Environment, 9(1), 2173041. https://doi.org/10.1080/27658511.2023.2173041
  • Setyawan, H. Y., Sunaryo, S., Waluyo, B., Merlya, M., Choirun, A., Nizori, A., & Sahrial, S. (2020a). Energy potential from Areca Palm through direct combustion and pyrolysis in Indonesia: A review. Indonesian Food Science and Technology Journal, 4(1), 19–26. https://doi.org/10.22437/ifstj.v4i1.11200
  • Setyawan, H. Y., Sunyoto, N., Wijana, S., & Pranowo, D. (2020b). Progress on pine derivative products as fuel source in Indonesia. IOP Conference Series: Materials Science and Engineering, 811(1), 012015. https://doi.org/10.1088/1757-899X/811/1/012015
  • Sharma, P., Marinov, I., Cabre, A., Kostadinov, T., & Singh, A. (2019). Increasing biomass in the warm oceans: Unexpected new insights from SeaWiFS. Geophysical Research Letters, 46(7), 3900–3910. https://doi.org/10.1029/2018GL079684
  • Soloiu, V., Lewis, J., Yoshihara, Y., & Nishiwaki, K. (2011). Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance. Energy, 36(7), 4353–4371. https://doi.org/10.1016/j.energy.2011.04.006
  • Suman, S., & Gautam, S. (2017). Pyrolysis of coconut husk biomass: Analysis of its biochar properties. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(8), 761–767. https://doi.org/10.1080/15567036.2016.1263252
  • Susilawati, A., Maftuah, E., & Fahmi, A. (2020). The utilization of agricultural waste as biochar for optimizing swampland: A review. IOP Conference Series: Materials Science and Engineering, 980(1), 012065. https://doi.org/10.1088/1757-899X/980/1/012065
  • Wang, X., Chen, H., Luo, K., Shao, J., & Yang, H. (2008). The influence of microwave drying on biomass pyrolysis. Energy & Fuels, 22(1), 67–74. https://doi.org/10.1021/ef700300m
  • Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R., & Glaser, B. (2013). Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass and Bioenergy, 59, 264–278. https://doi.org/10.1016/j.biombioe.2013.08.026
  • Wijitkosum, S. (2022). Biochar derived from agricultural wastes and wood residues for sustainable agricultural and environmental applications. International Soil and Water Conservation Research, 10(2), 335–341. https://doi.org/10.1016/j.iswcr.2021.09.006
  • Wijitkosum, S. (2023). Repurposing disposable bamboo chopsticks waste as biochar for agronomical application. Energies, 16(2), 771. https://doi.org/10.3390/en16020771
  • Wijitkosum, S., & Jiwnok, P. (2019). Elemental composition of biochar obtained from agricultural waste for soil amendment and carbon sequestration. Applied Sciences, 9(19), 3980. https://doi.org/10.3390/app9193980
  • Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014). Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management, 146, 189–197. https://doi.org/10.1016/j.jenvman.2014.08.003
  • Wojcieszak, D., Przybył, J., Czajkowski, Ł., Majka, J., & Pawłowski, A. (2022). Effects of harvest maturity on the chemical and energetic properties of corn stover biomass combustion. Materials, 15(8), 2831. https://doi.org/10.3390/ma15082831
  • Wu, Z., Sun, L., Dong, Y., Xu, X., & Xiong, Z. (2022). Contrasting effects of different field-aged biochars on potential methane oxidation between acidic and saline paddy soils. Science of the Total Environment, 853, 158643. https://doi.org/10.1016/j.scitotenv.2022.158643
  • Yana, Syaifuddin, Nizar, Muhammad, Mulyati, Dewi, Irhamni,. 2022. Biomass waste as a renewable energy in developing bio-based economies in Indonesia: A review. Renewable and Sustainable Energy Reviews, 160:112268. https://doi.org/10.1016/j.rser.2022.112268
  • Zepeda, L. C., Griffin, G., Shah, K., Al-Waili, I., & Parthasarathy, R. (2023). Energy potential, flow characteristics and stability of water and alcohol-based rice-straw biochar slurry fuel. Renewable Energy, 207, 60–72. https://doi.org/10.1016/j.renene.2023.02.104