536
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Exploring the potential of incorporating plastic waste, textile sludge, and construction and demolition waste into concrete: a comparative study

ORCID Icon, , , &
Article: 2307217 | Received 16 Jul 2023, Accepted 15 Jan 2024, Published online: 31 Jan 2024

References

  • Agency, O. E. P. “Ohio Environmental Protection Agency.” www.epa.state.oh.us
  • Al-Ansary, M. Sustainable guidelines for managing demolition waste in Egypt. Forum Barcelona International ‘RILEM’. (2004).
  • Albano, C., Camacho, N., Hernández, M., Matheus, A., & Gutiérrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management (New York, N.Y.), 29(10), 2707–2716. https://doi.org/10.1016/j.wasman.2009.05.007
  • Basha, S. I., Ali, M. R., Al-Dulaijan, S. U., & Maslehuddin, M. (2020). Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, 32, 101710. https://doi.org/10.1016/j.jobe.2020.101710
  • Chen, H. J., Yen, T., & Chen, K. H. (2003). The use of building rubbles in concrete and mortar. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-Kuo Kung Ch’eng Hsuch K’an, 26(2), 227–236. https://doi.org/10.1080/02533839.2003.9670773
  • Davis, M. L., & Cornwell, D. A. (1998). “Introduction to environmental engineering.”
  • Gagg, C. R. (2014). Cement and concrete as an engineering material: An historic appraisal and case study analysis. Engineering Failure Analysis, 40, 114–140. https://doi.org/10.1016/j.engfailanal.2014.02.004
  • Gemmill-Herren, B., Baker, L. E., & Daniels, P. A. (2021). True cost accounting for food: Balancing the scale. Taylor & Francis.
  • Ghazy, M., Dockhorn, T., & Dichtl, N. (2009). Sewage sludge management in Egypt: Current status and perspectives towards a sustainable agricultural use. World Academy of Science English and Technology, 33(9), 492–500.
  • Goyal, S., Siddique, R., Jha, S., & Sharma, D. (2019). Utilization of textile sludge in cement mortar and paste. Construction and Building Materials, 214, 169–177. https://doi.org/10.1016/j.conbuildmat.2019.04.023
  • Hall, P., Cliffs, E., & J, N. (1972). Encyclopedia of textiles.
  • Ibrahim, N. A., Abdel Moneim, N. M., Abdel Halim, E. S., & Hosni, M. M. (2008). Pollution prevention of cotton-cone reactive dyeing. Journal of Cleaner Production, 16(12), 1321–1326. https://doi.org/10.1016/j.jclepro.2007.07.002
  • Labaran, Y. H., Mathur, V. S., Muhammad, S. U., & Musa, A. A. (2022). Carbon footprint management: A review of construction industry. Cleaner Engineering and Technology, 9(July), 100531. https://doi.org/10.1016/j.clet.2022.100531
  • Loganayagan, S., Rajkumar, G., Pavthra, A., & Poonkundran, M. (2020). Experimental study on concrete by partial replacement of fine aggregate by textile effluent treatment plant sludge. IOP Conference Series: Materials Science and Engineering, 764(1), 012043. https://doi.org/10.1088/1757-899X/764/1/012043
  • Maierdan, Y., Haque, M. A., Chen, B., Maimaitiyiming, M., & Ahmad, M. R. (2020). Recycling of waste river sludge into unfired green bricks stabilized by a combination of phosphogypsum, slag, and cement. Construction and Building Materials, 260, 120666. https://doi.org/10.1016/j.conbuildmat.2020.120666
  • Manjunath, B. T. A. (2016). Partial replacement of e-plastic waste as coarse-aggregate in concrete. Procedia Environmental Sciences, 35, 731–739. https://doi.org/10.1016/j.proenv.2016.07.079
  • Muniraj, K., Asha, B., & Raja Ramachandran, P. (2014). Application of fine aggregate by replacement of tannery dry sludge in concrete. International Journal of Applied Environmental Sciences, 9, 2805–2815.
  • Parmar, N. (2023). Major aggregate sources: Which factors affect the choice of sources of aggregates? Civil Giant. https://www.civilgiant.com/aggregate-sources/
  • Parveen, S., Rana, S., & Fangueiro, R. (2013). A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. Journal of Nanomaterials, 2013, 1–19. https://doi.org/10.1155/2013/710175
  • Qaidi, S., Najm, H. M., Abed, S. M., Özkılıç, Y. O., Al Dughaishi, H., Alosta, M., Sabri, M. M. S., Alkhatib, F., & Milad, A. (2022). Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics. Materials, 15(18), 6222. https://doi.org/10.3390/ma15186222
  • Saeed, A., Najm, H. M., Hassan, A., Sabri, M. M. S., Qaidi, S., Mashaan, N. S., & Ansari, K. (2022). Properties and applications of geopolymer composites: A review study of mechanical and microstructural properties. Materials, 15(22), 8250. https://doi.org/10.3390/ma15228250
  • Saikia, N., & De Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385–401. https://doi.org/10.1016/j.conbuildmat.2012.02.066
  • Sakthivel, S., Sarathi, M., Sathish, S., & Sivakumar, M. (2019). Experimental investigation on textile mill sludge with partial replacement of fine aggregate in concrete. International Research Journal of Engineering and Technology (IRJET), 06(03), 7404–7407.
  • Sandanayake, M. S. (2022). Environmental impacts of construction in building industry—A review of knowledge advances, gaps and future directions. Knowledge, 2(1), 139–156. https://doi.org/10.3390/knowledge2010008
  • Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management (New York, N.Y.), 28(10), 1835–1852. https://doi.org/10.1016/j.wasman.2007.09.011
  • Singh, M., Choudhary, K., Srivastava, A., Singh Sangwan, K., & Bhunia, D. (2017). A study on environmental and economic impacts of using waste marble powder in concrete. Journal of Building Engineering, 13(February), 87–95. https://doi.org/10.1016/j.jobe.2017.07.009
  • Sójka-Ledakowicz, J., Koprowski, T., Machnowski, W., & Knudsen, H. H. (1998). Membrane filtration of textile dyehouse wastewater for technological water reuse. Desalination, 119(1–3), 1–9. https://doi.org/10.1016/S0011-9164(98)00078-2
  • Tahir, F., Sbahieh, S., & Al-Ghamdi, S. G. (2022). Environmental impacts of using recycled plastics in concrete. Material Today: Proceedings, 62, 4013–4017. https://doi.org/10.1016/j.matpr.2022.04.593
  • Tam, V. W. Y. (2008). Economic comparison of concrete recycling: A case study approach. Resources, Conservation and Recycling, 52(5), 821–828. https://doi.org/10.1016/j.resconrec.2007.12.001
  • Ullah, K., Irshad Qureshi, M., Ahmad, A., & Ullah, Z. (2022). Substitution potential of plastic fine aggregate in concrete for sustainable production. Structures, 35, 622–637. https://doi.org/10.1016/j.istruc.2021.11.003
  • Zhan, B. J., & Poon, C. S. (2015). Study on feasibility of reutilizing textile effluent sludge for producing concrete blocks. Journal of Cleaner Production, 101, 174–179. https://doi.org/10.1016/j.jclepro.2015.03.083
  • Zhao, Z., Courard, L., Groslambert, S., Jehin, T., Léonard, A., & Xiao, J. (2020). Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resources, Conservation and Recycling, 157(March), 104786. https://doi.org/10.1016/j.resconrec.2020.104786