393
Views
0
CrossRef citations to date
0
Altmetric
Material

Acetone vapor sensing characteristics of Cr-doped ZnO nanofibers

, ORCID Icon & ORCID Icon
Article: 2311090 | Received 06 Dec 2023, Accepted 23 Jan 2024, Published online: 04 Feb 2024

References

  • Agarwal, S., Rai, P., Gatell, E. N., Llobet, E., Güell, F., Kumar, M., & Awasthi, K. (2019). Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sensors and Actuators B: Chemical, 292, 24–31. https://doi.org/10.1016/j.snb.2019.04.083
  • Al-Hardan, N., Abdullah, M. J., Abdul Aziz, A., & Ahmad, H. (2010). Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films. Applied Surface Science, 256(11), 3468–3471. https://doi.org/10.1016/j.apsusc.2009.12.055
  • Al-Hardan, N. H., Abdullah, M. J., Abdul Aziz, A., Ahmad, H., & Low, L. Y. (2010). ZnO thin films for VOC sensing applications. Vacuum, 85(1), 101–106. https://doi.org/10.1016/j.vacuum.2010.04.009
  • Al-Hardan, N. H., Abdullah, M. J., & Aziz, A. A. (2013). Performance of Cr-doped ZnO for acetone sensing. Applied Surface Science, 270, 480–485. https://doi.org/10.1016/j.apsusc.2013.01.064
  • An, D., Li, Y., Lian, X., Zou, Y., & Deng, G. (2014). Synthesis of porous ZnO structure for gas sensor and photocatalytic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 447, 81–87. https://doi.org/10.1016/j.colsurfa.2014.01.060
  • Andhare, D. D., Patade, S. R., Kounsalye, J. S., & Jadhav, K. M. (2020). Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B: Condensed Matter, 583, 412051. https://doi.org/10.1016/j.physb.2020.412051
  • Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R. A., Gasparotto, A., MacCato, C., Sberveglieri, G., & Tondello, E. (2010). 1D ZnO nano-assemblies by plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical, 149(1), 1–7. https://doi.org/10.1016/j.snb.2010.06.048
  • Barsan, N., & Weimar, U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7(3), 143–167. https://doi.org/10.1023/A:1014405811371
  • Bernard, A., Villacorte, E., Maussen, K., Caudron, C., Robic, J., Maximo, R., Rebadulla, R., Bornas, M. A. A. V., & Solidum, R. U. (2020). Carbon dioxide in Taal Volcanic Lake: A simple gasometer for volcano monitoring. Geophysical Research Letters, 47(24), e2020GL090884. https://doi.org/10.1029/2020GL090884
  • Bhati, V. S., Ranwa, S., Fanetti, M., Valant, M., & Kumar, M. (2018). Efficient hydrogen sensor based on Ni-doped ZnO nanostructures by RF sputtering. Sensors and Actuators B: Chemical, 255, 588–597. https://doi.org/10.1016/j.snb.2017.08.106
  • Bhati, V. S., Ranwa, S., Rajamani, S., Kumari, K., Raliya, R., Biswas, P., & Kumar, M. (2018). Improved sensitivity with low limit of detection of a hydrogen gas sensor based on rGO-loaded Ni-doped ZnO nanostructures. ACS Applied Materials & Interfaces, 10(13), 11116–11124. https://doi.org/10.1021/acsami.7b17877
  • Boeglin, M. L., Wessels, D., & Henshel, D. (2006). An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties. Environmental Research, 100(2), 242–254. https://doi.org/10.1016/j.envres.2005.04.004
  • Chang, C. J., Chen, J. K., & Yang, T. L. (2014). Cr-doped ZnO based NO2 sensors with high sensitivity at low operating temperature. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1876–1882. https://doi.org/10.1016/j.jtice.2013.10.010
  • Chang, C. J., Yang, T. L., & Weng, Y. C. (2014). Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. Journal of Solid State Chemistry, 214, 101–107. https://doi.org/10.1016/j.jssc.2013.09.039
  • Chen, L., Yu, Q., Pan, C., Song, Y., Dong, H., Xie, X., Li, Y., Liu, J., Wang, D., & Chen, X. (2022). Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review. Talanta, 246, 123527. https://doi.org/10.1016/j.talanta.2022.123527
  • Chow, L., Lupan, O., Chai, G., Khallaf, H., Ono, L. K., Roldan Cuenya, B., Tiginyanu, I. M., Ursaki, V. V., Sontea, V., & Schulte, A. (2013). Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sensors and Actuators A: Physical, 189, 399–408. https://doi.org/10.1016/j.sna.2012.09.006
  • Francioso, L., Forleo, A., Taurino, A. M., Siciliano, P., Lorenzelli, L., Guarnieri, V., Adami, A., & Agnusdei, G. (2008). Linear temperature microhotplate gas sensor array for automotive cabin air quality monitoring. Sensors and Actuators B: Chemical, 134(2), 660–665. https://doi.org/10.1016/j.snb.2008.06.008
  • Gao, T., & Wang, T. H. (2005). Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications. Applied Physics A, 80(7), 1451–1454. https://doi.org/10.1007/s00339-004-3075-2
  • Ghafari, E., Feng, Y., Liu, Y., Ferguson, I., & Lu, N. (2017). Investigating process-structure relations of ZnO nanofiber via electrospinning method. Composites Part B: Engineering, 116, 40–45. https://doi.org/10.1016/j.compositesb.2017.02.026
  • Ghorbani, H. R., Mehr, F. P., Pazoki, H., & Rahmani, B. M. (2015). Synthesis of ZnO nanoparticles by precipitation method. Oriental Journal of Chemistry, 31(2), 1219–1221. https://doi.org/10.13005/ojc/310281
  • Gong, H., Hu, J. Q., Wang, J. H., Ong, C. H., & Zhu, F. R. (2006). Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sensors and Actuators B: Chemical, 115(1), 247–251. https://doi.org/10.1016/j.snb.2005.09.008
  • Habib, I. Y., Tajuddin, A. A., Noor, H. A., Lim, C. M., Mahadi, A. H., & Kumara, N. T. R. N. (2019). Enhanced carbon monoxide-sensing properties of chromium-doped ZnO nanostructures. Scientific Reports, 9(1), 9207. https://doi.org/10.1038/s41598-019-45313-w
  • Halvorsen, H. P., Grytten, O. A., Svendsen, M. V., & Mylvaganam, S. (2018). Environmental monitoring with focus on emissions using IoT platform for mobile alert [Paper presentation]. 2018 28th EAEEIE Annual Conference, EAEEIE 2018, 1–7. https://doi.org/10.1109/EAEEIE.2018.8534197
  • Hilal Elhousseini, M., Isık, T., Kap, Ö., Verpoort, F., & Horzum, N. (2020). Dual remediation of waste waters from methylene blue and chromium (VI) using thermally induced ZnO nanofibers. Applied Surface Science, 514, 145939. https://doi.org/10.1016/j.apsusc.2020.145939
  • Hosseini, S. M., Sarsari, I. A., Kameli, P., & Salamati, H. (2015). Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. Journal of Alloys and Compounds, 640, 408–415. https://doi.org/10.1016/j.jallcom.2015.03.136
  • Hsu, K. C., Fang, T. H., Hsiao, Y. J., & Li, Z. J. (2021). Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers. Journal of Alloys and Compounds, 852, 157014. https://doi.org/10.1016/j.jallcom.2020.157014
  • Hussien, N. M., Mohialden, Y. M., Ahmed, N. T., Mohammed, M. A., & Sutikno, T. (2020). A smart gas leakage monitoring system for use in hospitals. Indonesian Journal of Electrical Engineering and Computer Science, 19(2), 1048. https://doi.org/10.11591/ijeecs.v19.i2.pp1048-1054
  • Iqbal, J., Jan, T., & Ronghai, Y. (2013). Effect of Co doping on morphology, optical and magnetic properties of ZnO 1-D nanostructures. Journal of Materials Science: Materials in Electronics, 24(11), 4393–4398. https://doi.org/10.1007/s10854-013-1415-8
  • Jian, S., Tian, Z., Hu, J., Zhang, K., Zhang, L., Duan, G., Yang, W., & Jiang, S. (2021). Enhanced visible light photocatalytic efficiency of La-doped ZnO nanofibers via electrospinning-calcination technology. Advanced Powder Materials, 1(2), 100004. https://doi.org/10.1016/j.apmate.2021.09.004
  • Kaur, P., Kumar, S., Negi, N. S., & Rao, S. M. (2015). Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Applied Nanoscience, 5(3), 367–372. https://doi.org/10.1007/s13204-014-0326-1
  • Lee, J. H., Kim, J. Y., Kim, J. H., & Kim, S. S. (2019). Enhanced hydrogen detection in ppb-level by electrospun SnO2-loaded ZnO nanofibers. Sensors (Switzerland), 19(3), 726. https://doi.org/10.3390/s19030726
  • Li, L., Wang, W., Liu, H., Liu, X., Song, Q., & Ren, S. (2009). First principles calculations of electronic band structure and optical properties of Cr-doped ZnO. The Journal of Physical Chemistry C, 113(19), 8460–8464. https://doi.org/10.1021/jp811507r
  • Li, Y., Liu, M., Lv, T., & Lian, X. X. (2016). Gas sensing and photoluminescence of flower-like ZnO hollow microspheres synthesised using facile solvothermal method. Materials Technology, 31(1), 1–6. https://doi.org/10.1179/1753555715Y.0000000014
  • Li, Z., Askim, J. R., & Suslick, K. S. (2019). The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chemical Reviews, 119(1), 231–292. https://doi.org/10.1021/acs.chemrev.8b00226
  • Liu, Y. J., Zhang, H. D., Yan, X., Zhao, A. J., Zhang, Z. G., Si, W. Y., Gong, M. G., Zhang, J. C., & Long, Y. Z. (2016). Effect of Ce doping on the optoelectronic and sensing properties of electrospun ZnO nanofibers. RSC Advances, 6(89), 85727–85734. https://doi.org/10.1039/C6RA16491A
  • Maciel, A. P., Lisboa-Filho, P. N., Leite, E. R., Paiva-Santos, C. O., Schreiner, W. H., Maniette, Y., & Longo, E. (2003). Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles. Journal of the European Ceramic Society, 23(5), 707–713. https://doi.org/10.1016/S0955-2219(02)00190-5
  • Mahmood, K., Khalid, A., Ahmad, S. W., & Mehran, M. T. (2018). Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surface and Coatings Technology, 352, 231–237. https://doi.org/10.1016/j.surfcoat.2018.08.039
  • Maswanganye, M. W., Rammutla, K. E., Mosuang, T. E., & Mwakikunga, B. W. (2017). The effect of Co and In combinational or individual doping on the structural, optical and selective sensing properties of ZnO nanoparticles. Sensors and Actuators B: Chemical, 247, 228–237. https://doi.org/10.1016/j.snb.2017.02.039
  • Nakarungsee, P., Srirattanapibul, S., Issro, C., Tang, I. M., & Thongmee, S. (2020). High performance Cr doped ZnO by UV for NH3 gas sensor. Sensors and Actuators A: Physical, 314, 112230. https://doi.org/10.1016/j.sna.2020.112230
  • Norouzi, M. A., Montazer, M., Harifi, T., & Karimi, P. (2021). Flower buds like PVA/ZnO composite nanofibers assembly: Antibacterial, in vivo wound healing, cytotoxicity and histological studies. Polymer Testing, 93, 106914. https://doi.org/10.1016/j.polymertesting.2020.106914
  • Pan, L. (2020). Preventing forest fires using a wireless sensor network. Journal of Forest Science, 66(3), 97–104. https://doi.org/10.17221/151/2019-JFS
  • Pant, B., Park, M., Ojha, G. P., Park, J., Kuk, Y. S., Lee, E. J., Kim, H. Y., & Park, S. J. (2018). Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. Journal of Colloid and Interface Science, 522, 40–47. https://doi.org/10.1016/j.jcis.2018.03.055
  • Pavase, T. R., Lin, H., Shaikh, Q. u. a., Hussain, S., Li, Z., Ahmed, I., Lv, L., Sun, L., Shah, S. B. H., & Kalhoro, M. T. (2018). Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sensors and Actuators, B: Chemical, 273, 1113–1138. https://doi.org/10.1016/j.snb.2018.06.118
  • Poland, M. P., Lopez, T., Wright, R., & Pavolonis, M. J. (2020). Forecasting, detecting, and tracking volcanic eruptions from space. Remote Sensing in Earth Systems Sciences, 3(1–2), 55–94. https://doi.org/10.1007/s41976-020-00034-x
  • Prabhu, N. N., Jagadeesh Chandra, R. B., Rajendra, B. V., George, G., Mourad, A. H. I., & Shivamurthy, B. (2022). Electrospun zinc oxide nanofiber based resistive gas/vapor sensors - A review. Engineered Science, 19, 59–82. https://doi.org/10.30919/es8d612
  • Prabhu, N. N., Shivamurthy, B., Anandhan, S., Rajendra, B. V., Basanna, J. C. R., & Srivathsa, M. (2023). An investigation on the acetone and ethanol vapor-sensing behavior of sol–gel electrospun ZnO nanofibers using an indigenous setup. ACS Omega, 8(51), 49057–49066. https://doi.org/10.1021/acsomega.3c06744
  • Qamar, M. A., Shahid, S., Javed, M., Iqbal, S., Sher, M., Bahadur, A., Al-Anazy, M. M., Laref, A., & Li, D. (2021). Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 614, 126176. https://doi.org/10.1016/j.colsurfa.2021.126176
  • Rajeswari Yogamalar, N., & Chandra Bose, A. (2011). Tuning the aspect ratio of hydrothermally grown ZnO by choice of precursor. Journal of Solid State Chemistry, 184(1), 12–20. https://doi.org/10.1016/j.jssc.2010.10.024
  • Rella, R., Spadavecchia, J., Manera, M. G., Capone, S., Taurino, A., Martino, M., Caricato, A. P., & Tunno, T. (2007). Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sensors and Actuators B: Chemical, 127(2), 426–431. https://doi.org/10.1016/j.snb.2007.04.048
  • Saasa, V., Malwela, T., Beukes, M., Mokgotho, M., Liu, C. P., & Mwakikunga, B. (2018). Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring. Diagnostics, 8(1), 12. https://doi.org/10.3390/diagnostics8020012
  • Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Materials Letters, 152(2), 189–191. https://doi.org/10.1016/j.matlet.2015.03.112
  • Sridhar, R., Lakshminarayanan, R., Madhaiyan, K., Amutha Barathi, V., Lim, K. H. C., & Ramakrishna, S. (2015). Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chemical Society Reviews, 44(3), 790–814. https://doi.org/10.1039/c4cs00226a
  • Umeh, C., Gupta, R. C., Gupta, R., Kaur, H., Kazourra, S., Maguwudze, S., Torbela, A., & Saigal, S. (2021). Acetone ingestion resulting in cardiac arrest and death. Cureus, 13(10), e18466. https://doi.org/10.7759/cureus.18466
  • Wang, W., Li, Z., Zheng, W., Huang, H., Wang, C., & Sun, J. (2010). Cr2O3-sensitized ZnO electrospun nanofibers based ethanol detectors. Sensors and Actuators B: Chemical, 143(2), 754–758. https://doi.org/10.1016/j.snb.2009.10.016
  • Yan, X., Li, H., & Su, X. (2018). Review of optical sensors for pesticides. TrAC - Trends in Analytical Chemistry, 103, 1–20. https://doi.org/10.1016/j.trac.2018.03.004
  • Zhang, G. H., Deng, X. Y., Wang, P. Y., Wang, X. L., Chen, Y., Ma, H. L., & Gengzang, D. J. (2016). Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor. Materials Letters, 165, 83–86. https://doi.org/10.1016/j.matlet.2015.11.112
  • Zhang, L., Dong, B., Xu, L., Zhang, X., Chen, J., Sun, X., Xu, H., Zhang, T., Bai, X., Zhang, S., & Song, H. (2017). Three-dimensional ordered ZnO–Fe3O4 inverse opal gas sensor toward trace concentration acetone detection. Sensors and Actuators B: Chemical, 252, 367–374. https://doi.org/10.1016/j.snb.2017.05.167
  • Zhang, X., Dong, Z., Liu, S., Shi, Y., Dong, Y., & Feng, W. (2017). Maize straw-templated hierarchical porous ZnO:Ni with enhanced acetone gas sensing properties. Sensors and Actuators B: Chemical, 243, 1224–1230. https://doi.org/10.1016/j.snb.2016.12.076
  • Zhao, C., Tan, A., Pastorin, G., & Ho, H. K. (2013). Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 31(5), 654–668. https://doi.org/10.1016/j.biotechadv.2012.08.001
  • Zhu, L., Li, Y., & Zeng, W. (2017). Enhanced ethanol sensing and mechanism of Cr-doped ZnO nanorods: Experimental and computational study. Ceramics International, 43(17), 14873–14879. https://doi.org/10.1016/j.ceramint.2017.08.003