8,693
Views
0
CrossRef citations to date
0
Altmetric
Biomedical Engineering

Identifying gait quality metrics sensitive to changes in lower limb constraint

ORCID Icon, , &
Article: 2312697 | Received 24 Jul 2023, Accepted 27 Jan 2024, Published online: 20 Feb 2024

References

  • Adkin, A., Bloem, B., & Allum, J. (2005). Trunk sway measurements during stance and gait tasks in Parkinson’s disease. Gait & Posture, 22(3), 240–249. https://doi.org/10.1016/j.gaitpost.2004.09.009
  • Allen, J. L., Kautz, S. A., & Neptune, R. R. (2011). Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait & Posture, 33(4), 538–543. https://doi.org/10.1016/j.gaitpost.2011.01.004
  • Angelini, L., Carpinella, I., Cattaneo, D., Ferrarin, M., Gervasoni, E., Sharrack, B., Paling, D., Nair, K. P. S., & Mazzà, C. (2019). Is a wearable sensor-based characterisation of gait robust enough to overcome differences between measurement protocols? A multi-centric pragmatic study in patients with multiple sclerosis. Sensors, 20(1), 79. https://doi.org/10.3390/s20010079
  • Bailes, A. F., Greve, K., & Schmitt, L. C. (2010). Changes in two children with cerebral palsy after intensive suit therapy: A case report. Pediatric Physical Therapy, 22(1), 76–85. https://doi.org/10.1097/PEP.0b013e3181cbf224
  • Balasubramanian, C. K., Bowden, M. G., Neptune, R. R., & Kautz, S. A. (2007). Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Archives of Physical Medicine and Rehabilitation, 88(1), 43–49. https://doi.org/10.1016/j.apmr.2006.10.004
  • Balasubramanian, C. K., Neptune, R. R., & Kautz, S. A. (2009). Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait & Posture, 29(3), 408–414. https://doi.org/10.1016/j.gaitpost.2008.10.061
  • Bhakta, K., Camargo, J., Donovan, L., Herrin, K., Young, A., Valdastri, P., & Rouse, E. (2020). Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses. IEEE Robotics and Automation Letters, 5(4), 5393–5400. https://doi.org/10.1109/LRA.2020.3007480
  • Brunnekreef, J. J., Van Uden, C. J., van Moorsel, S., & Kooloos, J. G. (2005). Reliability of videotaped observational gait analysis in patients with orthopedic impairments. BMC Musculoskeletal Disorders, 6(1), 1–9. https://doi.org/10.1186/1471-2474-6-17
  • Chen, C.-L., Chen, H.-C., Wong, M.-K., Tang, F.-T., & Chen, R.-S. (2001). Temporal stride and force analysis of cane-assisted gait in people with hemiplegic stroke. Archives of Physical Medicine and Rehabilitation, 82(1), 43–48. https://doi.org/10.1053/apmr.2001.18060
  • Chen, H.-C., Chen, C.-L., Chen, Y.-M., Wong, A. M., & Lee, J. (2007). Instrumented shoes for measuring ground-reaction force of persons with stroke in level walking, stair ascending and descending [Paper presentation]. 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14. December 2006 Kuala Lumpur, Malaysia.
  • Cimolin, V., & Galli, M. (2014). Summary measures for clinical gait analysis: A literature review. Gait & Posture, 39(4), 1005–1010. https://doi.org/10.1016/j.gaitpost.2014.02.001
  • Collins, T. D., Ghoussayni, S. N., Ewins, D. J., & Kent, J. A. (2009). A six degrees-of-freedom marker set for gait analysis: repeatability and comparison with a modified Helen Hayes set. Gait & Posture, 30(2), 173–180. https://doi.org/10.1016/j.gaitpost.2009.04.004
  • Cutti, A. G., Verni, G., Migliore, G. L., Amoresano, A., & Raggi, M. (2018). Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. Journal of Neuroengineering and Rehabilitation, 15(Suppl 1), 61. https://doi.org/10.1186/s12984-018-0403-x
  • Del Din, S., Godfrey, A., Mazzà, C., Lord, S., & Rochester, L. (2016). Free‐living monitoring of Parkinson’s disease: Lessons from the field. Movement Disorders, 31(9), 1293–1313. https://doi.org/10.1002/mds.26718
  • Del Din, S., Hickey, A., Woodman, S., Hiden, H., Morris, R., Watson, P., Nazarpour, K., Catt, M., Rochester, L., & Godfrey, A. (2016). Accelerometer-based gait assessment: Pragmatic deployment on an international scale [Paper presentation]. 2016 IEEE Statistical Signal Processing Workshop (SSP). https://doi.org/10.1109/SSP.2016.7551794
  • Duffy, C., Dolan, M., & Buis, A. (2019 Comparison of function and mobility pre and post prescription of a microprocessor-controlled knee joint [Paper presentation]. British Association of Prosthetists and Orthotists Conference.
  • Eshraghi, A., Osman, N. A. A., Karimi, M., Gholizadeh, H., Soodmand, E., & Abas, W. A. B. W. (2014). Gait biomechanics of individuals with transtibial amputation: Effect of suspension system. PloS One, 9(5), e96988. https://doi.org/10.1371/journal.pone.0096988
  • Fatone, S., & Stine, R. (2015). Capturing quality clinical videos for two-dimensional motion analysis. JPO Journal of Prosthetics and Orthotics, 27(1), 27–32. https://doi.org/10.1097/JPO.0000000000000051
  • Giest, T. N., & Chang, Y.-H. (2016). Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation. Journal of Biomechanics, 49(9), 1757–1764. https://doi.org/10.1016/j.jbiomech.2016.04.004
  • Gill, J., Allum, J., Carpenter, M., Held-Ziolkowska, M., Adkin, A., Honegger, F., & Pierchala, K. (2001). Trunk sway measures of postural stability during clinical balance tests: effects of age. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(7), M438–M447. https://doi.org/10.1093/gerona/56.7.m438
  • Guzik, A., & Drużbicki, M. (2020). Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. Journal of Biomechanics, 99, 109575. https://doi.org/10.1016/j.jbiomech.2019.109575
  • Herrin, K., Upton, E., & Young, A. (2023). Towards meaningful community ambulation in individuals post stroke through use of a smart hip exoskeleton: A preliminary investigation. Assistive Technology, 2023 Aug 4, 1–11. https://doi.org/10.1080/10400435.2023.2239555
  • Highsmith, M. J., Schulz, B. W., Hart-Hughes, S., Latlief, G. A., & Phillips, S. L. (2010). Differences in the spatiotemporal parameters of transtibial and transfemoral amputee gait. JPO Journal of Prosthetics and Orthotics, 22(1), 26–30. https://doi.org/10.1097/JPO.0b013e3181cc0e34
  • Hillman, S. J., Donald, S. C., Herman, J., McCurrach, E., McGarry, A., Richardson, A. M., & Robb, J. E. (2010). Repeatability of a new observational gait score for unilateral lower limb amputees. Gait & Posture, 32(1), 39–45. https://doi.org/10.1016/j.gaitpost.2010.03.007
  • Hutabarat, Y., Owaki, D., & Hayashibe, M. (2021). Recent advances in quantitative gait analysis using wearable sensors: a review. IEEE Sensors Journal, 21(23), 26470–26487. https://doi.org/10.1109/JSEN.2021.3119658
  • Jourdan, T., Debs, N., & Frindel, C. (2021). The contribution of machine learning in the validation of commercial wearable sensors for gait monitoring in patients: A systematic review. Sensors, 21(14), 4808. https://doi.org/10.3390/s21144808
  • Kaczmarczyk, K., Wit, A., Krawczyk, M., & Zaborski, J. (2009). Gait classification in post-stroke patients using artificial neural networks. Gait & Posture, 30(2), 207–210. https://doi.org/10.1016/j.gaitpost.2009.04.010
  • Kark, L., Odell, R., McIntosh, A. S., & Simmons, A. (2016). Quantifying prosthetic gait deviation using simple outcome measures. World Journal of Orthopedics, 7(6), 383–391. https://doi.org/10.5312/wjo.v7.i6.383
  • Kark, L., & Simmons, A. (2011). Patient satisfaction following lower-limb amputation: The role of gait deviation. Prosthetics and Orthotics International, 35(2), 225–233. https://doi.org/10.1177/0309364611406169
  • Kark, L., Vickers, D., McIntosh, A., & Simmons, A. (2012). Use of gait summary measures with lower limb amputees. Gait & Posture, 35(2), 238–243. https://doi.org/10.1016/j.gaitpost.2011.09.013
  • Kiani, K., Snijders, C., & Gelsema, E. (1997). Computerized analysis of daily life motor activity for ambulatory monitoring. Technology and Health Care, 5(4), 307–318. https://doi.org/10.3233/THC-1997-5404
  • Kram, R., Griffin, T. M., Donelan, J. M., & Chang, Y. H. (1998). Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of Applied Physiology, 85(2), 764–769. https://doi.org/10.1152/jappl.1998.85.2.764
  • Lamoth, C. J., Ainsworth, E., Polomski, W., & Houdijk, H. (2010). Variability and stability analysis of walking of transfemoral amputees. Medical Engineering & Physics, 32(9), 1009–1014. https://doi.org/10.1016/j.medengphy.2010.07.001
  • Lee, D., Shepherd, M. K., Mulrine, S. C., Schneider, J., Moore, K., Eggebrecht, E., Rogozinski, B., Herrin, K., & Young, A. J. (2023). Reducing knee hyperextension with an exoskeleton in children and adolescents with genu recurvatum: A feasibility study. IEEE Transactions on Bio-Medical Engineering, 70(12), 3312–3320. https://doi.org/10.1109/TBME.2023.3282165
  • Lewek, M. D., Bradley, C. E., Wutzke, C. J., & Zinder, S. M. (2014). The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke. Journal of Applied Biomechanics, 30(1), 31–36. https://doi.org/10.1123/jab.2012-0208
  • Lythgo, N., Marmaras, B., & Connor, H. (2010). Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices. Archives of Physical Medicine and Rehabilitation, 91(10), 1565–1570. https://doi.org/10.1016/j.apmr.2010.07.014
  • Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281–1289. https://doi.org/10.1038/s41593-018-0209-y
  • McCain, E. M., Libera, T. L., Berno, M. E., Sawicki, G. S., Saul, K. R., & Lewek, M. D. (2021). Isolating the energetic and mechanical consequences of imposed reductions in ankle and knee flexion during gait. Journal of Neuroengineering and Rehabilitation, 18(1), 21. https://doi.org/10.1186/s12984-021-00812-8
  • Middleton, A., Fritz, S. L., & Lusardi, M. (2015). Walking speed: The functional vital sign. Journal of Aging and Physical Activity, 23(2), 314–322. https://doi.org/10.1123/japa.2013-0236
  • Neumann, E. S., Brink, J., Yalamanchili, K., & Lee, J. S. (2014). Use of a load cell and force–moment curves to compare transverse plane moment loads on transtibial residual limbs: A preliminary investigation. Prosthetics and Orthotics International, 38(3), 253–262. https://doi.org/10.1177/0309364613497048
  • Perry, J., Garrett, M., Gronley, J. K., & Mulroy, S. J. (1995). Classification of walking handicap in the stroke population. Stroke, 26(6), 982–989. https://doi.org/10.1161/01.str.26.6.982
  • Perry, J. A., & Srinivasan, M. (2017). Walking with wider steps changes foot placement control, increases kinematic variability and does not improve linear stability. Royal Society Open Science, 5(1), 172000. https://doi.org/10.1098/rsos.160627
  • Puthoff, M. L., Janz, K. F., & Nielson, D. (2008). The relationship between lower extremity strength and power to everyday walking behaviors in older adults with functional limitations. Journal of Geriatric Physical Therapy, 31(1), 24–31. https://doi.org/10.1519/00139143-200831010-00005
  • Rast, F. M., & Labruyère, R. (2020). Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. Journal of Neuroengineering and Rehabilitation, 17(1), 148. https://doi.org/10.1186/s12984-020-00779-y
  • Rathinam, C., Bateman, A., Peirson, J., & Skinner, J. (2014). Observational gait assessment tools in paediatrics–A systematic review. Gait & Posture, 40(2), 279–285. https://doi.org/10.1016/j.gaitpost.2014.04.187
  • Read, F. A., Boyd, R. N., & Barber, L. A. (2017). Longitudinal assessment of gait quality in children with bilateral cerebral palsy following repeated lower limb intramuscular Botulinum toxin-A injections. Research in Developmental Disabilities, 68, 35–41. https://doi.org/10.1016/j.ridd.2017.07.002
  • Roberts, M., Mongeon, D., & Prince, F. (2017). Biomechanical parameters for gait analysis: a systematic review of healthy human gait. Physical Therapy and Rehabilitation, 4(1), 6. https://doi.org/10.7243/2055-2386-4-6
  • Robinson, R. O., Herzog, W., & Nigg, B. M. (1987). Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics, 10(6), 295–299.
  • Sayeed, M. S., Min, P. P., & Bari, M. A. (2022). Deep learning based gait recognition using convolutional neural network in the COVID-19 pandemic. Emerging Science Journal, 6(5), 1086–1099. https://doi.org/10.28991/ESJ-2022-06-05-012
  • Schwartz, M. H., & Rozumalski, A. (2008). The Gait Deviation Index: A new comprehensive index of gait pathology. Gait & Posture, 28(3), 351–357. https://doi.org/10.1016/j.gaitpost.2008.05.001
  • Seeley, M. K., Umberger, B. R., & Shapiro, R. (2008). A test of the functional asymmetry hypothesis in walking. Gait & Posture, 28(1), 24–28. https://doi.org/10.1016/j.gaitpost.2007.09.006
  • Simon, J. C., Kruger, K., Krzak, J. J., Altiok, H., & Harris, G. F. (2021). Joint contact force model for patients with knee height asymmetry [Virtual poster presentation]. Transactions of the 66th Annual Meeting of the Orthopaedic Research Society. February 13-16, 2021.
  • Suri, A., Rosso, A. L., VanSwearingen, J., Coffman, L. M., Redfern, M. S., Brach, J. S., & Sejdić, E. (2021). Mobility of older adults: Gait quality measures are associated with life-space assessment scores. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 76(10), e299–e306. https://doi.org/10.1093/gerona/glab151
  • Toney, M. E., & Chang, Y.-H. (2013). Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces. Experimental Brain Research, 231(4), 433–443. https://doi.org/10.1007/s00221-013-3708-9
  • Toro, B., Nester, C., & Farren, P. (2003). A review of observational gait assessment in clinical practice. Physiotherapy Theory and Practice, 19(3), 137–149. https://doi.org/10.1080/09593980307964
  • Van de Warrenburg, B. P., Bakker, M., Kremer, B. P., Bloem, B. R., & Allum, J. H. (2005). Trunk sway in patients with spinocerebellar ataxia. Movement Disorders, 20(8), 1006–1013. https://doi.org/10.1002/mds.20486
  • Wang, Q., Tong, G., & Zhou, S. (2023). A study of dance movement capture and posture recognition method based on vision sensors. HighTech and Innovation Journal, 4(2), 283–293. https://doi.org/10.28991/HIJ-2023-04-02-03
  • Watelain, E., Froger, J., Rousseaux, M., Lensel, G., Barbier, F., Lepoutre, F.-X., & Thevenon, A. (2005). Variability of video-based clinical gait analysis in hemiplegia as performed by practitioners in diverse specialties. Journal of Rehabilitation Medicine, 37(5), 317–324. https://doi.org/10.1080/16501970510035610
  • White, R., Agouris, I., & Fletcher, E. (2005). Harmonic analysis of force platform data in normal and cerebral palsy gait. Clinical Biomechanics, 20(5), 508–516. https://doi.org/10.1016/j.clinbiomech.2005.01.001
  • Wong, C. K., Chen, C. C., Blackwell, W. M., Rahal, R. T., & Benoy, S. A. (2015). Balance ability measured with the Berg balance scale: A determinant of fall history in community-dwelling adults with leg amputation. Journal of Rehabilitation Medicine, 47(1), 80–86. https://doi.org/10.2340/16501977-1882
  • Wonsetler, E. C., & Bowden, M. G. (2017). A systematic review of mechanisms of gait speed change post-stroke. Part 1: Spatiotemporal parameters and asymmetry ratios. Topics in Stroke Rehabilitation, 24(6), 435–446. https://doi.org/10.1080/10749357.2017.1285746
  • Zmitrewicz, R. J., Neptune, R. R., Walden, J. G., Rogers, W. E., & Bosker, G. W. (2006). The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Archives of Physical Medicine and Rehabilitation, 87(10), 1334–1339. https://doi.org/10.1016/j.apmr.2006.06.013