465
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

A regularized volumetric ConvNet based Alzheimer detection using T1-weighted MRI images

, , , , , ORCID Icon & show all
Article: 2314872 | Received 16 Oct 2023, Accepted 01 Feb 2024, Published online: 11 Feb 2024

References

  • ADNI Dataset. (n.d.). http://adni.loni.usc.edu/.
  • AIBL Dataset. (n.d.). http://adni.loni.usc.edu/category/aibl-study-data/.
  • Alzheimer’s Association. (n.d.). Facts and figures. https://www.alz.org/alzheimers-dementia/facts-figures.
  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007
  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for ‘pipeline’ data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4(May), 13. https://doi.org/10.3389/fnsys.2010.00013
  • Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011). Unbiased average age-appropriate atlases for pediatric studies. Neuroimage, 54(1), 313–327. https://doi.org/10.1016/j.neuroimage.2010.07.033
  • Friston, K., Ashburner, J., Kiebel, S., Nichols, T., & Penny, W. (2007). Statistical parametric mapping: The analysis of functional brain images. Academic Press.
  • Gupta, A. (2013). Natural image bases to represent neuroimaging data [Paper presentation]. Proceedings of the 30th International Conference on Machine Learning (Vol. 28, pp. 987–994).
  • Hao, X., Bao, Y., Guo, Y., Yu, M., Zhang, D., Risacher, S. L., Saykin, A. J., Yao, X., & Shen, L. (2019). Multi-modal neuroimaging feature selection with consistent metric constraint for diagnosis of Alzheimer’s disease. Medical Image Analysis, 60, 101625. https://doi.org/10.1016/j.media.2019.101625
  • Hosseini-Asl, E., Ghazal, M., Mahmoud, A., Aslantas, A., Shalaby, A. M., Casanova, M. F., Barnes, G. N., Gimel'farb, G., Keynton, R., & El-Baz, A. (2018). Alzheimer’s disease diagnostics by a volumetric deeply supervised adaptable convolutional network. Frontiers in Bioscience, 23(5), 584–596.
  • Islam, J., & Zhang, Y. (2018). Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Informatics, 5(2), 2. https://doi.org/10.1186/s40708-018-0080-3
  • Jain, R., Jain, N., Aggarwal, A., & Hemanth, D. J. (2019). Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images. Cognitive Systems Research, 57, 147–159. https://doi.org/10.1016/j.cogsys.2018.12.015
  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132
  • Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015
  • Korolev, S., Safiullin, A., Belyaev, M., & Dodonova. (2017). Residual and plain convolutional neural networks for volumetric brain MRI classification [Paper presentation]. IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (pp. 835–838).
  • Lahmiri, S., & Shmuel, A. (2019). Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer’s disease. Biomedical Signal Processing and Control, 52, 414–419.
  • Lee, G., Nho, K., Kang, B., Sohn, K.-A., & Kim, D. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9, 1952.
  • Li, W., Lin, X., & Chen, X. (2020). Detecting Alzheimer’s disease based on 4D fMRI : An exploration under deep learning framework. Neurocomputing, 388, 280–287. https://doi.org/10.1016/j.neucom.2020.01.053
  • Lin, M., Chen, Q., Yan, S. (2014). Network in network. ArXiv, 1–10.
  • Liu, M., Li, F., Yan, H., Wang, K., Ma, Y., Shen, L., & Xu, M. (2020). A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage, 208(2019), 116459. https://doi.org/10.1016/j.neuroimage.2019.116459
  • Liu, M., Zhang, J., Adeli, E., & Shen, D. (2018). Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Transactions on Biomedical Engineering, 66, 1195–1206.
  • Malone, I. B., Cash, D., Ridgway, G. R., MacManus, D. G., Ourselin, S., Fox, N. C., & Schott, J. M. (2013). NeuroImage MIRIAD—Public Release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage, 70, 33–36. https://doi.org/10.1016/j.neuroimage.2012.12.044
  • MIPAV. (n.d.). https://mipav.cit.nih.gov/index.php.
  • MIRIAD Dataset. (n.d.). http://miriad.drc.ion.ucl.ac.uk/.
  • OASIS Dataset. (n.d.). https://www.oasis-brains.org/.
  • Oh, K., Chung, Y.-C., Kim, K. W., Kim, W.-S., & Oh, I.-S. (2019). Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning. Scientific Reports, 9(1), 18150. https://doi.org/10.1038/s41598-019-54548-6
  • Punjabi, A., Martersteck, A., Wang, Y., Parrish, T. B., & Katsaggelos, A. K. (2019). Neuroimaging modality fusion in Alzheimer’s classification using convolutional neural networks. PLoS One. 14(12), e0225759. https://doi.org/10.1371/journal.pone.0225759
  • Qiu, S., Chang, G. H., Panagia, M., Gopal, D. M., Au, R., & KolachalAMa, V. B. (2018). Fusion of deep learning models of MRI scans, Mini – Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment. Alzheimer’s & Dementia, 10, 737–749. https://doi.org/10.1016/j.dadm.2018.08.013
  • Qu, L., Wu, C., & Zou, L. (2020). Volumetric dense separated convolution module for volumetric medical image analysis. Applied Sciences, 10(2), 485. https://doi.org/10.3390/app10020485
  • Rieke, J., et al. (2018). Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. Lecture Notes in Computer Science, 2, 24–31.
  • Shukla, A., Tiwari, R., & Tiwari, S. (2023a). Alz-ConvNets for classification of Alzheimer disease using transfer learning approach. SN Computer Science, 4(4), 404. https://doi.org/10.1007/s42979-023-01853-7
  • Shukla, A., Tiwari, R., & Tiwari, S. (2023b). Structural biomarker‐based Alzheimer’s disease detection via ensemble learning techniques. International Journal of Imaging Systems and Technology, 34(1), e22967. https://doi.org/10.1002/ima.22967
  • Shukla, A., Tiwari, R., & Tiwari, S. (2024). Analyzing subcortical structures in Alzheimer’s disease using ensemble learning. Biomedical Signal Processing and Control, 87, 105407. https://doi.org/10.1016/j.bspc.2023.105407
  • Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97. https://doi.org/10.1109/42.668698
  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062
  • Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908
  • Zhang, D., & Shen, D. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. Neuroimage, 59(2), 895–907. https://doi.org/10.1016/j.neuroimage.2011.09.069
  • Zunair, H., Rahman, A., Mohammed, N., Cohen, J. P. (2020). Uniformizing techniques to process CT scans with volumetric ConvNets for tuberculosis prediction. ArXiv, 1–12.