164
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Investigation of mechanical properties on the 3-step T6 treated Al6061/SiCp cascaded bars for structural applications

, , , ORCID Icon, , , & show all
Article: 2315826 | Received 01 Jun 2023, Accepted 04 Feb 2024, Published online: 05 Mar 2024

References

  • Ali Fageehi, Y., Saminathan, R., Venugopal, G., Valder, J., Kumar, H., & Ravishankar, K. S. (2021). Effect of thermal and surface chemical treatment on the cyclic oxidation behavior of 7039 aluminum alloy used in aerospace armor applications. Materials Today: Proceedings, 42, 343–349.
  • Alphonse, M., Bupesh Raja, V. K., Vivek, M. S., Sai Deepak Raj, N. V., Satya Sai Darshan, M., & Bharmal, P. (2021). Effect of heat treatment on mechanical properties of forged aluminium alloy AA2219. Materials Today: Proceedings, 44, 3811–3815. https://doi.org/10.1016/j.matpr.2020.12.334
  • Bhowmik, A., Dey, D., & Biswas, A. (2020). Comparative study of microstructure, physical and mechanical characterization of SiC/TiB2 reinforced aluminium matrix composite. Silicon, 13(6), 2003–2010. https://doi.org/10.1007/s12633-020-00591-2
  • Bindumadhavan, P. N., Chia, T. K., Chandrasekaran, M., Wah, H. K., Lam, L. N., & Prabhakar, O. (2001). Effect of particle-porosity clusters on tribological behavior of cast aluminum alloy A356-SiCp metal matrix composites. Materials Science and Engineering A, 315(1-2), 217–226. https://doi.org/10.1016/S0921-5093(00)01989-4
  • Cheng, Y. S., & Zhang, X. H. (2015). Interfacial strength, and structure of joining between 2024 aluminum alloy and SiCp/2024 Al composite in semi-solid state. Materials & Design (1980-2015), 65, 7–11. https://doi.org/10.1016/j.matdes.2014.08.062
  • Chung, S., & Hwang, B. H. (1994). A microstructural study of the wear behaviour of SiCp/Al composites. Tribology International, 27(5), 307–314. https://doi.org/10.1016/0301-679X(94)90024-8
  • Deuis, R. L., Subramanian, C., & Yellup, J. M. (1996). Abrasive wear of aluminium composites-a review. Wear, 201(1-2), 132–144. https://doi.org/10.1016/S0043-1648(96)07228-6
  • Gatea, S., Ou, H., & McCartney, G. (2018). Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Materials Characterization, 142, 365–376. https://doi.org/10.1016/j.matchar.2018.05.050
  • Halil, K., İsmail, O., Sibel, D., & Ramazan, Ç. (2019). Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy. Journal of Materials Research and Technology, 8(6), 5348–5361. https://doi.org/10.1016/j.jmrt.2019.09.002
  • Hassan, S. F., & Gupta, M. (2005). Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metallurgical and Materials Transactions A, 36(8), 2253–2258. https://doi.org/10.1007/s11661-005-0344-4
  • Jiang, F., Huang, J., Jiang, Y., & Xu, C. (2021). Effects of quenching rate and over-aging on microstructures, mechanical properties, and corrosion resistance of an Al-Zn-Mg (7046A) alloy. Journal of Alloys and Compounds, 854, 157–272.
  • Jiang, L., Yang, H., Yee, J. K., Mo, X., Topping, T., Lavernia, E. J., & Schoenung, J. M. (2016). Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles. Acta Materialia, 15, 128–140.
  • Karabulut, Ş., Karakoç, H., & Çıtak, R. (2016). Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Composites Part B: Engineering, 101, 87–98. https://doi.org/10.1016/j.compositesb.2016.07.006
  • Krishnan, P. K., Christy, J. V., Arunachalam, R., Mourad, A.-H I., Muraliraja, R., Al-Maharbi, M., Murali, V., & Chandra, M. M. (2019). Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties. Journal of Alloys and Compounds. 784, 1047–1061. https://doi.org/10.1016/j.jallcom.2019.01.115
  • Lee, Y.-S., Koh, D.-H., Kim, H.-W., & Ahn, Y.-S. (2018). Improved bake hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment. Scripta Materialia. 147, 45e9–45e49. https://doi.org/10.1016/j.scriptamat.2017.12.030
  • Lim, S. C., Gupta, M., Ren, L., & Kwok, J. K. M. (1999). The tribological properties of Al–Cu/SiCp metal–matrix composites fabricated using the rheocasting technique. Journal of Materials Processing Technology. 89-90(90), 591–596. https://doi.org/10.1016/S0924-0136(99)00067-9
  • Liu, S., Zhang, M., Li, Q., Zhu, Q., Song, H., Wu, X., Cao, L., & Couper, M. J. (2020). Effect of quenching rate on strengthening behavior of an Al-Zn-Mg-Cu alloy during natural ageing. Materials Science and Engineering A, 793, 139–900.
  • Liu, Z., Du, Z., Jiang, H., Gong, T., Cui, X., Liu, J., & Cheng, J. (2021). Microstructure evolution and corresponding tensile properties of Ti–5Al–5Mo–5V–1Cr–1Fe alloy controlling by multi-heat treatments. Progress in Natural Science: Materials International, 31, 731–741.
  • Loto, R. T., & Babalola, P. (2018). Effect of alumina nano-particle size and weight content on the corrosion resistance of AA1070 aluminum in chloride/sulphate solution. Results in Physics, 10, 731–737. https://doi.org/10.1016/j.rinp.2018.07.025
  • Mazahery, A., & Shabani, M. O. (2012). Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: Experimental and novel modeling evaluation. Powder Technology, 217, 558–565. https://doi.org/10.1016/j.powtec.2011.11.020
  • Moazami-Goudarzi, M., & Akhlaghi, F. (2016). Wear behavior of Al 5252 alloy reinforced with micrometric and nanometric SiC particles. Tribology International, 102, 28–37. https://doi.org/10.1016/j.triboint.2016.05.013
  • Mohammad Sharifi, E., Karimzadeh, F., & Enayati, M. H. (2011). Fabrication, and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Materials & Design, 32(6), 3263–3271. https://doi.org/10.1016/j.matdes.2011.02.033
  • Mosisa, E., Yu Bazhin, V., & Savchenkov, S. (2016). Review on nano particle reinforced aluminum metal matrix composites. Research Journal of Applied Sciences, 11(5), 188–196.
  • Omer, K., Abolhasani, A., Kim, S., Nikdejad, T., Butcher, C., Wells, M., Esmaeili, S., & Worswick, M. (2018). Process parameters for hot stamping of AA7075 and D-7xxx to achieve high performance aged products. Journal of Materials Processing Technology, 257, 170–179. https://doi.org/10.1016/j.jmatprotec.2018.02.039
  • Ostad Shabani, M., & Mazahery, A. (2011). International Journal of Applied Mathematics and Mechanics, 7, 89–97.
  • Österreicher, J. A., Kirov, G., Gerstl, S. S. A., Mukeli, E., Grabner, F., & Kumar, M. (2018). Stabilization of 7xxx aluminium alloys. Journal of Alloys and Compounds, 740, 167e73–167173. https://doi.org/10.1016/j.jallcom.2018.01.003
  • Rahimian, M., Parvin, N., & Ehsani, N. (2010). Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Materials Science and Engineering: A, 527(4-5), 1031–1038. https://doi.org/10.1016/j.msea.2009.09.034
  • Reddy, M. P., Manakari, V., Parande, G., Ubaid, F., Shakoor, R. A., Mohamed, A. M. A., & Gupta, M. (2018). enhancing compressive, tensile, thermal, and damping response of pure Al using BN nanoparticles. Journal of Alloys and Compounds, 762, 398–408. https://doi.org/10.1016/j.jallcom.2018.05.205
  • Roy, M., Venkataraman, B., Bhanuprasad, V. V., Mahajan, Y. R., & Sundararajan, G. (1992). The effect of participate reinforcement on the sliding wear behavior of aluminum matrix composites. Metallurgical Transactions A, 23(10), 2833–2847. https://doi.org/10.1007/BF02651761
  • Shivaprakash, Y. M., Gurumurthy, B. M., Hiremath, P., Sharma, S., & Sowrabh, B. S. (2022). Spider web approach hardness validation of peak aged Al6061/SiC/h-BN composite and related mechanical characterization. Manufacturing Review, 9, 24. https://doi.org/10.1051/mfreview/2022021
  • Singh, J. (2016). Fabrication characteristics and tribological behavior of Al/SiC/Gr hybrid aluminum matrix composites: A review. Friction, 4(3), 191–207. https://doi.org/10.1007/s40544-016-0116-8
  • Skolianos, S., & Kattamis, T. Z. (1993). Tribological properties of SiCp-reinforced Al-4.5% Cu-1.5% Mg alloy composites. Materials Science and Engineering A, 163(1), 107–113. https://doi.org/10.1016/0921-5093(93)90584-2
  • Sowrabh, B. S., Gurumurthy, B. M., Shivaprakash, Y. M., & Sharma, S. S. (2021). Reinforcements, production techniques and property analysis of AA7075 matrix composites: A critical review. Manufacturing Review, 8, 31. https://doi.org/10.1051/mfreview/2021029
  • Stemper, L., Tunes, M. A., Dumitraschkewitz, P., Mendez-Martin, F., Tosone, R., Marchand, D., Curtin, W. A., Uggowitzer, P. J., & Pogatscher, S. (2021). Giant hardening response in Al-Mg-Zn (Cu) alloys. Acta Materialia. 206, 116617. https://doi.org/10.1016/j.actamat.2020.116617
  • Tang, F., Wu, X., Ge, S., Ye, J., Zhu, H., Hagiwara, M., & Schoenung, J. M. (2008). Dry sliding friction and wear properties of B4C particulate-reinforced Al-5083 matrix composites. Wear, 264(7-8), 555–561. https://doi.org/10.1016/j.wear.2007.04.006
  • Xiu, Z., Yang, W., Dong, R., Hussain, M., Jiang, L., Liu, Y., & Wu, G. (2015). Microstructure, and mechanical properties of 45 vol.% SiCp/7075Al composite. Journal of Materials Science and Technology. 31(9), 930–934. https://doi.org/10.1016/j.jmst.2015.01.012
  • Zhang, Z., Deng, Y., Ye, L., Zhu, W., Wang, F., Jiang, K., & Guo, X. (2020). Influence of aging treatments on the strength and localized corrosion resistance of aged Al-Zn-Mg-Cu alloy. Journal of Alloys and Compounds. 846, 156223. https://doi.org/10.1016/j.jallcom.2020.156223
  • Zhao, Y. T., Zhang, S. L., Chen, G., Cheng, X. N., & Wang, C. Q. (2008). In situ (Al2O3 + Al3Zr)np/Al nanocomposites synthesized by magneto-chemical melt reaction. Composites Science and Technology. 68(6), 1463–1470. https://doi.org/10.1016/j.compscitech.2007.10.036
  • Zhou, L., Chen, K., Chen, S., Ding, Y., & Fan, S. (2021). Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment. Journal of Alloys and Compounds. 850, 156717. https://doi.org/10.1016/j.jallcom.2020.156717