235
Views
0
CrossRef citations to date
0
Altmetric
Production & Manufacturing

A hybridization of MODWT-SVR-DE model emphasizing on noise reduction and optimal parameter selection for prediction of CO2 emission in Thailand

& ORCID Icon
Article: 2317540 | Received 11 Apr 2023, Accepted 07 Feb 2024, Published online: 21 Feb 2024

References

  • Adnan, R. M., Dai, H. L., Mostafa, R. R., Parmar, K. S., Heddam, S., & Kisi, O. (2022). Modeling multistep ahead dissolved oxygen concentration using improved support vector machines by a hybrid metaheuristic algorithm. Sustainability, 14(6), 3470. https://doi.org/10.3390/su14063470
  • Ahmadi, M. H., Dehghani Madvar, M., Sadeghzadeh, M., Rezaei, M. H., Herrera, M., & Shamshirband, S. (2019). Current status investigation and predicting carbon dioxide emission in Latin American countries by connectionist models. Energies, 12(10), 1916. https://doi.org/10.3390/en12101916
  • Batool, S., Iqbal, J., Ali, A., & Perveen, B. (2022). Causal relationship between energy consumption, economic growth, and financial development: Evidence from South Asian Countries. Journal of Environmental Science and Economics, 1(4), 61–76. https://doi.org/10.56556/jescae.v1i4.319
  • Cahyono, W. E., Joy, B., Setyawati, W., & Mahdi, R. (2022). Projection of CO2 emissions in Indonesia. Materials Today: Proceedings, 63(1), S438–S444. https://www.sciencedirect.com/science/article/pii/S2214785322022258
  • Climate Watch. (2022). Historical Emissions. https://www.climatewatchdata.org/
  • Ehteram, M., Sammen, S. S., Panahi, F., & Sidek, L. M. (2021). A hybrid novel SVM model for predicting CO2 emissions using Multiobjective Seagull Optimization. Environmental Science and Pollution Research International, 28(46), 66171–66192. https://doi.org/10.1007/s11356-021-15223-4
  • Franco, C., Melica, G., Treville, A., Baldi, M. G., Pisoni, E., Bertoldi, P., & Thiel, C. (2022). Prediction of greenhouse gas emissions for cities and local municipalities monitoring their advances to mitigate and adapt to climate change. Sustainable Cities and Society, 86, 104114. https://doi.org/10.1016/j.scs.2022.104114
  • Ghazvini, M., Dehghani Madvar, M., Ahmadi, M. H., Rezaei, M. H., El Haj Assad, M., Nabipour, N., & Kumar, R. (2020). Technological assessment and modeling of energy‐related CO2 emissions for the G8 countries by using hybrid IWO algorithm based on SVM. Energy Science & Engineering, 8(4), 1285–1308. https://doi.org/10.1002/ese3.593
  • Hou, Y., Zhao, L., & Lu, H. (2018). Fuzzy neural network optimization and network traffic forecasting based on improved differential evolution. Future Generation Computer Systems, 81, 425–432. https://doi.org/10.1016/j.future.2017.08.041
  • Hu, Y. L., & Chen, L. (2018). A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm. Energy Conversion and Management, 173, 123–142. https://doi.org/10.1016/j.enconman.2018.07.070
  • Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of statistical software, 27, 1–22.
  • Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2022). forecast: Forecasting functions for time series and linear models. R package version 8.16. https://pkg.robjhyndman.com/forecast/.
  • Jaiboon, N., Wongsapai, W., Daroon, S., Bunchuaidee, R., Ritkrerkkrai, C., & Damrongsak, D. (2021). Greenhouse gas mitigation potential from waste heat recovery for power generation in cement industry: The case of Thailand. Energy Reports, 7, 638–643. https://doi.org/10.1016/j.egyr.2021.07.089
  • Javanmard, M. E., & Ghaderi, S. F. (2022). A hybrid model with applying machine learning algorithms and optimization model to forecast greenhouse gas emissions with energy market data. Sustainable Cities and Society, 82, 103886. https://doi.org/10.1016/j.scs.2022.103886
  • Kim, I., & Jang, Y. (2022). Material efficiency and greenhouse gas reduction effect of industrial waste by material circulation in Korea. Journal of Cleaner Production, 376, 134053. https://doi.org/10.1016/j.jclepro.2022.134053
  • Kumari, S., & Singh, S. K. (2022). Machine learning-based time series models for effective CO2 emission prediction in India. Environmental Science and Pollution Research, 30(55), 116601–116616. https://doi.org/10.1007/s11356-022-21723-8
  • Leerbeck, K., Bacher, P., Junker, R. G., Goranović, G., Corradi, O., Ebrahimy, R., Tveit, A., & Madsen, H. (2020). Short-term forecasting of CO2 emission intensity in power grids by machine learning. Applied Energy, 277, 115527. https://doi.org/10.1016/j.apenergy.2020.115527
  • Li, X., Ren, A., & Li, Q. (2022). Exploring patterns of transportation-related CO2 emissions using machine learning methods. Sustainability, 14(8), 4588. https://doi.org/10.3390/su14084588
  • Lu, L. C., Chiu, S. Y., Chiu, Y. H., & Chang, T. H. (2022). Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors–A modified dynamic parallel three-stage network DEA model. Journal of Environmental Management, 317, 115401. https://doi.org/10.1016/j.jenvman.2022.115401
  • Ning, L., Pei, L., & Li, F. (2021). Forecast of China’s carbon emissions based on Arima method. Discrete Dynamics in Nature and Society, 2021, 1–12. https://doi.org/10.1155/2021/1441942
  • Nong, D., Simshauser, P., & Nguyen, D. B. (2021). Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax. Applied Energy, 298, 117223. https://doi.org/10.1016/j.apenergy.2021.117223
  • Raihan, A., & Tuspekova, A. (2022). Nexus between energy use, industrialization, forest area, and carbon dioxide emissions: New insights from Russia. Journal of Environmental Science and Economics, 1(4), 1–11. https://doi.org/10.56556/jescae.v1i4.269
  • Raihan, A., & Voumik, L. C. (2022). Carbon emission dynamics in India due to financial development, renewable energy utilization, technological innovation, economic growth, and urbanization. Journal of Environmental Science and Economics, 1(4), 36–50. https://doi.org/10.56556/jescae.v1i4.412
  • Seo, Y., Choi, Y., & Choi, J. (2017). River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm. Water, 9(7), 525. https://doi.org/10.3390/w9070525
  • Shams, M. A., Anis, H. I., & El-Shahat, M. (2021). Denoising of heavily contaminated partial discharge signals in high-voltage cables using maximal overlap discrete wavelet transform. Energies, 14(20), 6540. https://doi.org/10.3390/en14206540
  • Sovacool, B. K., Griffiths, S., Kim, J., & Bazilian, M. (2021). Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 141, 110759. https://doi.org/10.1016/j.rser.2021.110759
  • Srikaummun, N., Wongsapai, W., Damrongsak, D., Thepsaskul, W., Ritkrekkrai, C., Bunchuaidee, R., Tridech, N., & Juprasert, P. (2021). Greenhouse gas mitigation and electricity saving potential from replacing refrigerants in Thai refrigerator. Energy Reports, 7, 98–104. https://doi.org/10.1016/j.egyr.2021.07.138
  • Wongsapai, W., & Daroon, S. (2021). Estimation of greenhouse gas mitigation potential from carbon intensity and energy data analysis from Thai industrial sector. Energy Reports, 7, 930–936. https://doi.org/10.1016/j.egyr.2021.07.048
  • Xu, H., Pan, X., Guo, S., & Lu, Y. (2021). Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis. Energy, 228, 120514. https://doi.org/10.1016/j.energy.2021.120514
  • Yang, Z., Ren, J., Ma, S., Chen, X., Cui, S., & Xiang, L. (2022). The emission-inequality Nexus: Empirical evidence from a wavelet-based quantile-on-quantile regression approach. Frontiers in Environmental Science, 10, 871846. https://doi.org/10.3389/fenvs.2022.871846
  • Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. Advances in carbon capture (pp. 3–28). Woodhead Publishing.
  • Zhang, F., Deb, C., Lee, S. E., Yang, J., & Shah, K. W. (2016). Time series forecasting for building energy consumption using weighted support vector regression with differential evolution optimization technique. Energy and Buildings, 126, 94–103. https://doi.org/10.1016/j.enbuild.2016.05.028