425
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Performance evaluation of low volume synthetic fibres in pozzolanic cement concrete

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Article: 2319398 | Received 21 Jul 2023, Accepted 12 Feb 2024, Published online: 22 Feb 2024

References

  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82. https://doi.org/10.1016/j.conbuildmat.2015.06.051
  • Ahmed, T. W., Ali, A. A. M., & Zidan, R. S. (2020). Properties of high strength polypropylene fiber concrete containing recycled aggregate. Construction and Building Materials, 241, 118010. https://doi.org/10.1016/j.conbuildmat.2020.118010
  • Akid, A. S. M., Hossain, S., Munshi, M. I. U., Elahi, M. M. A., Sobuz, M. H. R., Tam, V. W. Y., & Islam, M. S. (2021). Assessing the influence of fly ash and polypropylene fiber on fresh, mechanical and durability properties of concrete. Journal of King Saud University - Engineering Sciences, 35(7), 474–484. https://doi.org/10.1016/j.jksues.2021.06.005
  • Al-Swaidani, A. M. (2021). Natural pozzolana of micro and nano-size as cementitious additive: resistance of concrete/mortar to chloride and acid attack. Cogent Engineering, 8(1), 1–23. https://doi.org/10.1080/23311916.2021.1996306
  • Alwesabi, E. A. H., Bakar, B. H. A., Alshaikh, I. M. H., & Akil, H. M. (2020). Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Construction and Building Materials, 233, 117194. https://doi.org/10.1016/j.conbuildmat.2019.117194
  • Amin, M., Tayeh, B. A., Agwa., & I., Saad. (2020). Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures. Case Studies in Construction Materials, 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459
  • Arora, V. V., Singh, B., & Patel, V. (2019). Durability and corrosion studies in prestressed concrete made with blended cement. Journal of Asian Concrete Federation, 5(1), 15–24. https://doi.org/10.18702/acf.2019.06.30.15
  • Arunkumar, Y. M., Prashanth, S., Pandit, P., Girish, M. G., & Shetty, A. (2023). Finite element analysis of bond behavior in corroded reinforced concrete beams: State-Of-The-Art. Journal of Applied Engineering Science, 21(4), 1031–1042. https://doi.org/10.5937/jaes0-42252
  • Babaie, R., Abolfazli, M., & Fahimifar, A. (2019). Mechanical properties of steel and polymer fiber reinforced concrete. Journal of the Mechanical Behavior of Materials, 28(1), 119–134. https://doi.org/10.1515/jmbm-2019-0014
  • Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. https://doi.org/10.1016/j.cemconres.2006.01.010
  • Bediako, M., Adjaottor, A. A., Gawu, S. K. Y., & Amankwah, E. O. (2020). Compressive strength and durability properties of pozzolan obtained from co-fired clay and rice husk. Cogent Engineering, 7(1), 1811453. https://doi.org/10.1080/23311916.2020.1811453
  • Benaicha, M., Jalbaud, O., Hafidi Alaoui, A., & Burtschell, Y. (2015). Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Construction and Building Materials, 101, 702–709. https://doi.org/10.1016/j.conbuildmat.2015.10.047
  • Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. (2010). Experimental evaluation of fiber reinforced concrete fracture properties. Composites Part B: Engineering, 41(1), 17–24. https://doi.org/10.1016/j.compositesb.2009.09.002
  • Bhagwat, Y., Nayak, G., Pandit, P., & Lakshmi, A. (2023). Effect of polypropylene fibres on strength and durability performance of M-sand self compacting concrete Effect of polypropylene fibres on strength and durability performance of M-sand self compacting concrete. Cogent Engineering, 10(1), 1–21. https://doi.org/10.1080/23311916.2023.2233783
  • Blazy, J., & Blazy, R. (2021). Polypropylene fiber reinforced concrete and its application in creating architectural forms of public spaces. Case Studies in Construction Materials, 14, e00549. https://doi.org/10.1016/j.cscm.2021.e00549
  • BS EN 12504-4. (2004). Testing concrete—Part 4: Determination of ultrasonic pulse velocity.
  • Bureau of Indian Standard(BIS). (2013). IS: 8112 – 1989, Specification for 43 grade Ordinary Portland Cement. Bureau of Indian Standards. 17.
  • Bureau of Indian Standards, IS 1199. (1959). Methods of sampling and analysis of concrete.
  • Bureau of Indian Standards, IS 1489-1. (1991). Specification for Portland pozzolana cement, Part 1: Flyash based.
  • Bureau of Indian Standards, IS 516 (1959). Method of Tests for Strength of Concrete.
  • Bureau of Indian Standards, IS 5816 (1999). Method of Test Splitting Tensile Strength of Concrete.
  • Deb, S., Mitra, N., Majumder, S. B., & Maitra, S. (2018). Improvement in tensile and flexural ductility with the addition of different types of polypropylene fibers in cementitious composites. Construction and Building Materials, 180, 405–411. https://doi.org/10.1016/j.conbuildmat.2018.05.280
  • Deng, F., Cao, C., Xu, L., & Chi, Y. (2022). Interfacial bond characteristics of polypropylene fiber in steel/polypropylene blended fiber reinforced cementitious composite. Construction and Building Materials, 341, 127897. https://doi.org/10.1016/j.conbuildmat.2022.127897
  • Devadiga, D. G., Bhat, K. S., & Mahesha, G. T. (2020). Sugarcane bagasse fiber reinforced composites: Recent advances and applications. Cogent Engineering, 7(1), 1823159. https://doi.org/10.1080/23311916.2020.1823159
  • Fang, Q., Li, B., Yin, J., & Yuan, X. (2017). Microstructural and microanalytical study on concrete exposed to the sulfate environment. IOP Conference Series: Materials Science and Engineering, 269(1), 1–8. https://doi.org/10.1088/1757-899X/269/1/012070
  • Gebhard, S. C., Gratson, D. A., French, R. J., Ratcliff, M. A., Patrick, J. A., & Paisley, M. A. (1991). I 1048. DIN 1048-5 Testing Concrete, Testing Hardened Concrete, 0106.
  • Golewski, G. L. (2018). Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). Journal of Hazardous Materials, 357(May), 298–304. https://doi.org/10.1016/j.jhazmat.2018.06.016
  • Golewski, G. L. (2023a). Combined effect of coal fly ssh (CFA) and Nanosilica (nS) on the strength parameters and microstructural properties of eco-friendly concrete. Energies, 16(1), 452. https://doi.org/10.3390/en16010452
  • Golewski, G. L. (2023b). Concrete composites based on quaternary blended cements with a reduced width of initial microcracks. Applied Sciences, 13(12), 7338. https://doi.org/10.3390/app13127338
  • Golewski, G. L. (2023c). Mechanical properties and brittleness of concrete made by combined fly ash, silica fume and nanosilica with ordinary Portland cement. AIMS Materials Science, 10(3), 390–404. https://doi.org/10.3934/matersci.2023021
  • Golewski, G. L. (2023d). The effect of the addition of coal fly ash (CFA) on the control of water movement within the structure of the concrete. Materials (Basel, Switzerland), 16(15), 5218. https://doi.org/10.3390/ma16155218
  • Guidelines, Bureau of Indian standards. “IS 10262-2019”: C. mix proportioning IS 10262 (2019).
  • Guo, H., Tao, J., Chen, Y., Li, D., Jia, B., & Zhai, Y. (2019). Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Construction and Building Materials, 224, 504–514. https://doi.org/10.1016/j.conbuildmat.2019.07.096
  • Hannant, D. J. (2000). 4.11 Cement-based Composites.
  • Hannawi, K., Bian, H., Prince-Agbodjan, W., & Raghavan, B. (2016). Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes. Composites Part B: Engineering, 86, 214–220. https://doi.org/10.1016/j.compositesb.2015.09.059
  • Joshi, S. S., Thammishetti, N., & Prakash, S. S. (2018). Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams. Engineering Structures, 171, 47–55. https://doi.org/10.1016/j.engstruct.2018.05.067
  • Karahan, O., & Atiş, C. D. (2011). The durability properties of polypropylene fiber reinforced fly ash concrete. Materials & Design, 32(2), 1044–1049. https://doi.org/10.1016/j.matdes.2010.07.011
  • Lakshmi, A., Pandit, P., Bhagwat, Y., & Nayak, G. (2022). A review on efficiency of polypropylene fiber-reinforced concrete. Lecture Notes in Civil Engineering, 162, 799–812. https://doi.org/10.1007/978-981-16-2826-9_50
  • Leong, G. W., Mo, K. H., Loh, Z. P., & Ibrahim, Z. (2020). Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Construction and Building Materials, 246, 118410. https://doi.org/10.1016/j.conbuildmat.2020.118410
  • Leung, H. Y., & Balendran, R. V. (2003). Properties of fresh polypropylene fibre reinforced concrete under the influence of pozzolans. Journal of Civil Engineering and Management, 9(4), 271–279. https://doi.org/10.1080/13923730.2003.10531339
  • Liang, N., Mao, J., Yan, R., Liu, X., & Zhou, X. (2022). Corrosion resistance of multiscale polypropylene fiber-reinforced concrete under sulfate attack. Case Studies in Construction Materials, 16, e01065. https://doi.org/10.1016/j.cscm.2022.e01065
  • Mohseni, E., Yazdi, M. A., Miyandehi, B. M., Zadshir, M., & Ranjbar, M. M. (2017). Combined effects of metakaolin, rice husk ash, and polypropylene fiber on the engineering properties and microstructure of mortar. Journal of Materials in Civil Engineering, 29(7), 1–10. https://doi.org/10.1061/(asce)mt.1943-5533.0001867
  • Nosheen, H., Qureshi, L. A., Tahir, M. F., & Rashid, M. U. (2018). An investigation on shear behavior of prestressed concrete beams cast by fiber reinforced concrete. Arabian Journal for Science and Engineering, 43(10), 5605–5613. https://doi.org/10.1007/s13369-018-3243-x
  • Pandit, P. (2019). Experimental study on accelerated corrosion technique of OPC and PPC beams in coastal environment. Journal of Corrosion Science and Engineering, 22(, 1–12.
  • Parande, A. K., Babu, B. R., Pandi, K., Karthikeyan, M. S., & Palaniswamy, N. (2011). Environmental effects on concrete using Ordinary and Pozzolana Portland cement. Construction and Building Materials, 25(1), 288–297. https://doi.org/10.1016/j.conbuildmat.2010.06.027
  • Poornachandra Pandit, & Katta Venkataramana (2014). Effect of corrosion on flexural behaviour of reinforced concrete beams. National Institute of Technology Karnataka.
  • Prasad, P., & Singh, S. P. (2023). Durability properties of metakaolin based geopolymer polypropylene fibre reinforced concrete. Materials Today: Proceedings, 93(P3), 227–233. https://doi.org/10.1016/j.matpr.2023.07.175
  • Qian, Y., Yang, D., Xia, Y., Gao, H., & Ma, Z. (2023). Properties and improvement of ultra-high performance concrete with coarse aggregates and polypropylene fibers after high-temperature damage. Construction and Building Materials, 364(April 2022), 129925. https://doi.org/10.1016/j.conbuildmat.2022.129925
  • Rahma, A., & Jomaa, H. (2018). Modeling the cementitious effect of the Pozzolana on the compressive strength of concrete. Cogent Engineering, 5(1), 1548002. https://doi.org/10.1080/23311916.2018.1548002
  • Rangrazian, M., Madandoust, R., Mahjoub, R., & Raftari, M. (2022). Reduction of CO2 environmental pollution from concrete, by adding local mineral pozzolan as a part of cement replacement in concrete: a case study on engineering properties. Nanotechnology for Environmental Engineering, 8(1), 253–268. https://doi.org/10.1007/s41204-022-00288-4
  • Rashid, M. U., Qureshi, L. A., & Tahir, M. F. (2019). Investigating flexural behaviour of prestressed concrete girders cast by fibre-reinforced concrete. Advances in Civil Engineering 1–11. https://doi.org/10.1155/2019/1459314
  • Sadrinejad, I., Ranjbar, M. M., & Madandoust, R. (2018). Influence of hybrid fibers on serviceability of RC beams under loading and steel corrosion. Construction and Building Materials, 184, 502–514. https://doi.org/10.1016/j.conbuildmat.2018.07.024
  • Saidani, M., Saraireh, D., & Gerges, M. (2016). Behaviour of different types of fibre reinforced concrete without admixture. Engineering Structures, 113, 328–334. https://doi.org/10.1016/j.engstruct.2016.01.041
  • Saje, D., Bandelj, B., Šušteršič, J., Lopatič, J., & Saje, F. (2011). Shrinkage of polypropylene fiber-reinforced high-performance concrete. Journal of Materials in Civil Engineering, 23(7), 941–952. https://doi.org/10.1061/(asce)mt.1943-5533.0000258
  • Shen, D., Liu, X., Zeng, X., Zhao, X., & Jiang, G. (2020). Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Construction and Building Materials, 244, 117874. https://doi.org/10.1016/j.conbuildmat.2019.117874
  • Wang, L., Zhang, P., Golewski, G., & Guan, J. (2023). Editorial: Fabrication and properties of concrete containing industrial waste. Frontiers in Materials, 10(March), 2022–2023. https://doi.org/10.3389/fmats.2023.1169715
  • Yousefieh, N., Joshaghani, A., Hajibandeh, E., & Shekarchi, M. (2017). Influence of fibers on drying shrinkage in restrained concrete. Construction and Building Materials, 148, 833–845. https://doi.org/10.1016/j.conbuildmat.2017.05.093