566
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Exploring the potential of Cu2FeSnS4: a comprehensive review on structural properties, optoelectronic features, and future prospects in earth-abundant thin film solar cells

, , , & ORCID Icon
Article: 2322076 | Received 14 Dec 2023, Accepted 17 Feb 2024, Published online: 28 Feb 2024

References

  • Adewoyin, A. D., Olopade, M. A., Oyebola, O. O., & Chendo, M. A. (2019). Development of CZTGS/CZTS tandem thin film solar cell using SCAPS-1D. Optik (Stuttg), 176(September 2018), 132–142. https://doi.org/10.1016/j.ijleo.2018.09.033
  • Agyei-Tuffour, B., Mensah-Darkwa, K., Ampong, D. N., Addae, E. A., Gbadam, G. S., Darko, C. N. S., Akyaw, A. O., Adjah, J., Asare, J., Li, G., & Goosen, N. J. (2022). Nanomaterials in 2-dimensions for flexible solar cell applications–a review. Cogent Engineering, 9(1), 2143034(1-31) . https://doi.org/10.1080/23311916.2022.2143034
  • Ait Elhaj, D., El Kissani, A., Ait Dads, H., Chaib, H., Elassali, K., & Outzourhit, A. (2021). A simple route for synthesis of copper iron tin sulfide thin films. Materials Letters, 292, 129646. https://doi.org/10.1016/j.matlet.2021.129646
  • Amiri, S., & Dehghani, S. (2020). Design of highly efficient CZTS/CZTSe tandem solar cells. Journal of Electronic Materials, 49(3), 2164–2172. https://doi.org/10.1007/s11664-019-07898-w
  • Ananthoju, B., Mohapatra, J., Jangid, M. K., Bahadur, D., Medhekar, N. V., & Aslam, M. (2016). Cation/anion substitution in Cu2FeSnS4 for improved photovoltaic performance. Scientific Reports, 6(1), 35369. https://doi.org/10.1038/srep35369
  • Ashok Kumar, L., Indragandhi, V., & Uma Maheswari, Y. (2020). PVSYST. In Software tools for the simulation of electrical systems theory and practice (pp. 349–392). Academic Press. https://doi.org/10.1016/b978-0-12-819416-4.00009-0
  • Baid, M., Hashmi, A., Jain, B. et al. A comprehensive review on Cu2ZnSnS4 (CZT S) thin film for solar cell: forecast issues and future anticipation. Opt Quant Electron 53, 656 (2021). https://doi.org/10.1007/s11082-021-03272-5
  • Chatterjee, S., & Pal, A. J. (2017). A solution approach to p-type Cu2FeSnS4 thin-films and pn-junction solar cells: Role of electron selective materials on their performance. Solar Energy Materials and Solar Cells, 160(October 2016), 233–240. https://doi.org/10.1016/j.solmat.2016.10.037
  • Dong, C., Ashebir, G. Y., Qi, J., Chen, J., Wan, Z., Chen, W., & Wang, M. (2018). Solution-processed Cu2FeSnS4 thin films for photovoltaic application. Materials Letters, 214, 287–289. https://doi.org/10.1016/j.matlet.2017.12.032
  • Dong, C., Meng, W., Qi, J., & Wang, M. (2017). Cu2FeSnS4 nanocrystals as effective electron acceptors for hybrid solar cells. Materials Letters, 189(October 2016), 104–106. https://doi.org/10.1016/j.matlet.2016.11.090
  • Dridi, S., El Fidha, G., Bitri, N., Chaabouni, F., & Ly, I. (2020). Synthesis of chemical spray pyrolyzed Cu2FeSnS4 thin films for solar cells. Indian Journal of Physics, 94(7), 1097–1102. https://doi.org/10.1007/s12648-019-01539-y
  • Drissi, S., EL Kissani, A., Abali, A., Ait Lhaj, D., Elmassi, S., Amiri, L., Nkhaili, L., EL Assali, K., Narjis, A., & Outzourhit, A. (2023). Substitution effects on physical and chemical properties of Cu2Fe1-xCoxSnS4 thin films synthesized by the sol-gel technique. Physica B: Condensed Matter, 667(April), 415184. https://doi.org/10.1016/j.physb.2023.415184
  • El Khouja, O., Galca, A. C., Nouneh, K., Zaki, M. Y., Ebn Touhami, M., Taibi, M., Matei, E., Negrila, C. C., Enculescu, M., & Pintilie, L. (2021). Structural, morphological and optical properties of Cu–Fe–Sn–S thin films prepared by electrodeposition at fixed applied potential. Thin Solid Films, 721(September 2020), 138547. https://doi.org/10.1016/j.tsf.2021.138547
  • El Radaf, I. M., Al-Zahrani, H. Y. S., Fouad, S. S., & El-Bana, M. S. (2020). Profound optical analysis for novel amorphous Cu2FeSnS4 thin films as an absorber layer for thin film solar cells. Ceramics International, 46(11), 18778–18784. https://doi.org/10.1016/j.ceramint.2020.04.195
  • Gokmen, T., Gunawan, O., Todorov, T. K., & Mitzi, D. B. (2013). Band tailing and efficiency limitation in kesterite solar cells. Applied Physics Letters, 103(10), 2–7. https://doi.org/10.1063/1.4820250
  • Guan, H., Shen, H., Jiao, B., & Wang, X. (2014). Structural and optical properties of Cu2FeSnS4 thin film synthesized via a simple chemical method. Materials Science in Semiconductor Processing, 25, 159–162. https://doi.org/10.1016/j.mssp.2013.10.021
  • Kevin, P., Malik, M. A., & O'Brien, P. (2015). The AACVD of Cu2FeSn(SxSe1-x)4: Potential environmentally benign solar cell materials. New Journal of Chemistry, 39(9), 7046–7053. https://doi.org/10.1039/C5NJ01198A
  • Khattak, Y. H., Baig, F., Ullah, S., Marí, B., Beg, S., & Ullah, H. (2018). Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik, 164, 547–555. https://doi.org/10.1016/j.ijleo.2018.03.055
  • Konan, F. K., Nkuissi, H. J. T., & Hartiti, B. (2019). Numerical simulations of highly efficient Cu2FeSnS4 (CFTS) based solar cells. International Journal of Renewable Energy Research (IJRER), 9(4), 1865–1872. https://doi.org/10.20508/ijrer.v9i4.9816.g7829
  • Kumar, A. (2021). Theoretical analysis of CZTS/CZTSSe tandem solar cell. Optical and Quantum Electronics, 53(9), 1–8. https://doi.org/10.1007/s11082-021-03183-5
  • Le Donne, A., Trifiletti, V., & Binetti, S. (2019). New earth-abundant thin film solar cells based on chalcogenides. Frontiers in Chemistry, 7(APR), 297. https://doi.org/10.3389/fchem.2019.00297
  • Lee, T. D., & Ebong, A. U. (2017). A review of thin film solar cell technologies and challenges. Renewable and Sustainable Energy Reviews, 70(September 2015), 1286–1297. https://doi.org/10.1016/j.rser.2016.12.028
  • Li, L., Wang, Y., Wang, X., Lin, R., Luo, X., Liu, Z., Zhou, K., Xiong, S., Bao, Q., Chen, G., Tian, Y., Deng, Y., Xiao, K., Wu, J., Saidaminov, M. I., Lin, H., Ma, C.-Q., Zhao, Z., Wu, Y., Zhang, L., & Tan, H. (2022). Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 7(8), 708–717. https://doi.org/10.1038/s41560-022-01045-2
  • Madhusudanan, S. P., Balamoorthy, E., M, S. K., Manivasagam, T. G., & Batabyal, S. K. (2022). Alloyed Cu2Fe1-xBaxSnS4 for photoelectrochemical applications: band gap tailoring and structural transition. Journal of Solid State Electrochemistry, 26(11), 2411–2421. https://doi.org/10.1007/s10008-022-05243-6
  • Madhusudanan, S. P., Mohanta, K., & Batabyal, S. K. (2019). Electrical bistability and memory switching phenomenon in Cu2FeSnS4 thin films: role of p-n junction. Journal of Solid State Electrochemistry, 23(5), 1307–1314. https://doi.org/10.1007/s10008-019-04213-9
  • Madhusudanan, S. P., Suresh Kumar, M., Mohanta, K., & Batabyal, S. K. (2021). Photoactive Cu2FeSnS4 thin films: Influence of stabilizers. Applied Surface Science, 535, 147600. https://doi.org/10.1016/j.apsusc.2020.147600
  • Meng, X., Deng, H., He, J., Sun, L., Yang, P., & Chu, J. (2015). Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Materials Letters, 151, 61–63. https://doi.org/10.1016/j.matlet.2015.03.046
  • Meng, X., Deng, H., Sun, L., Yang, P., & Chu, J. (2015). Sulfurization temperature dependence of the structural transition in Cu2FeSnS4-based thin films. Materials Letters, 161, 427–430. https://doi.org/10.1016/j.matlet.2015.09.013
  • Meng, X., Deng, H., Tao, J., Cao, H., Li, X., Sun, L., Yang, P., & Chu, J. (2016). Heating rate tuning in structure, morphology and electricity properties of Cu2FeSnS4 thin films prepared by sulfurization of metallic precursors. Journal of Alloys and Compounds, 680, 446–451. https://doi.org/10.1016/j.jallcom.2016.04.166
  • Meng, X., Guo, X., Wang, Z., & Yang, P. (2024). Effect of Se percent on the properties of Cu2FeSn(S,Se)4 thin films prepared by Sol–gel method. Materials Letters, 355(September 2023), 135484. https://doi.org/10.1016/j.matlet.2023.135484
  • Miao, X., Chen, R., & Cheng, W. (2017). Synthesis and characterization of Cu2FeSnS4 thin films prepared by electrochemical deposition. Materials Letters, 193, 183–186. https://doi.org/10.1016/j.matlet.2017.01.099
  • Mokurala, K., & Mallick, S. (2017). Effect of annealing atmosphere on quaternary chalcogenide-based counter electrodes in dye-sensitized solar cell performance: synthesis of Cu2FeSnS4 and Cu2CdSnS4 nanoparticles by thermal decomposition process. RSC Advances, 7(25), 15139–15148. https://doi.org/10.1039/C6RA28889H
  • Mokurala, K., Mallick, S., & Bhargava, P. (2016). Alternative quaternary chalcopyrite sulfides (Cu2FeSnS4 and Cu2CoSnS4) as electrocatalyst materials for counter electrodes in dye-sensitized solar cells. Journal of Power Sources, 305, 134–143. https://doi.org/10.1016/j.jpowsour.2015.11.081
  • Mukurala, N., Mokurala, K., Kumar, A., Kushwaha, A. K., & Jin, S. H. (2021). Synthesis process dependent physico-chemical and opto-electronic properties of Cu2FeSnS4 nanoparticle films. Ceramics International, 47(19), 27898–27907. https://doi.org/10.1016/j.ceramint.2021.06.220
  • Mukurala, N., Mokurala, K., Suman, S., & Kushwaha, A. K. (2021). Synthesis of porous Cu2FeSnS4 particles via solvothermal process for removal of organic acid fuchsin dye pollutant from wastewater. Nano-Structures & Nano-Objects, 26, 100697. https://doi.org/10.1016/j.nanoso.2021.100697
  • Mukurala, N., Suman, S., Bhardwaj, A., Mokurala, K., Jin, S. H., & Kushwaha, A. K. (2021). Cu2FeSnS4 decorated Ni-TiO2 nanorods heterostructured photoanode for enhancing water splitting performance. Applied Surface Science, 551, 149377. https://doi.org/10.1016/j.apsusc.2021.149377
  • Nefzi, C., Souli, M., Cuminal, Y., & Kamoun-Turki, N. (2018). Effect of substrate temperature on physical properties of Cu2FeSnS4 thin films for photocatalysis applications. Materials Science and Engineering: B, 254, 114509. https://doi.org/10.1016/j.mseb.2020.114509
  • Nefzi, C., Souli, M., Jeyadevan, B., & Kamoun-Turki, N. (2020). Effect of sprayed volume on physical properties of Cu2FeSnS4 thin films and an efficient p-type Cu2FeSnS4/n-type F-doped SnO2 heterojunction. Journal of Physical Chemistry Solids, 144(April), 109497. https://doi.org/10.1016/j.jpcs.2020.109497
  • Nefzi, C., Souli, M., Luisa Dotor Castilla, M., García, J. M., & Kamoun-Turki, N. (2020). CFTSx-3/In2S3/SnO2:F heterojunction structure as eco-friendly photocatalytic candidate for removing organic pollutants. Arabian Journal of Chemistry, 13(8), 6366–6378. https://doi.org/10.1016/j.arabjc.2020.05.038
  • Nilange, S. G., Patil, N. M., & Yadav, A. A. (2019). Growth and characterization of spray deposited quaternary Cu2FeSnS4 semiconductor thin films. Physica B: Condensed Matter, 560(January), 103–110. https://doi.org/10.1016/j.physb.2019.02.008
  • Nilange, S. G., Patil, N. M., & Yadav, A. A. (2019). Influence of precursor thiourea contents on the properties of spray deposited Cu2FeSnS4 thin films. Physica B: Condensed Matter, 570(June), 73–81. https://doi.org/10.1016/j.physb.2019.06.009
  • Ohring, M. (2002). Deposition and Structure. In Materials science of thin films (Second Edition) (pp. 95–144). Academic Press. https://doi.org/10.1016/B978-012524975-1/50006-9
  • Oueslati, H., Ben Rabeh, M., & Kanzari, M. (2018). Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method. Applied Physics A, 124(2), 1–9. https://doi.org/10.1007/s00339-018-1566-9
  • Oueslati, H., Ben Rabeh, M., Martin, J., & Kanzari, M. (2019). Structural, morphological and optical properties of Cu2ZnxFe1-xSnS4 thin films grown by thermal evaporation. Thin Solid Films, 669(June 2018), 633–640. https://doi.org/10.1016/j.tsf.2018.11.048
  • Prabhakar, R. R., Huu Loc, N., Kumar, M. H., Boix, P. P., Juan, S., John, R. A., Batabyal, S. K., & Wong, L. H. (2014). Facile water-based spray pyrolysis of earth-abundant Cu2FeSnS4 thin films as an efficient counter electrode in dye-sensitized solar cells. ACS Applied Materials & Interfaces, 6(20), 17661–17667. https://doi.org/10.1021/am503888v
  • Qu, Y., Zoppi, G., & Beattie, N. S. (2016). Selenization kinetics in Cu2ZnSn(S,Se)4 solar cells prepared from nanoparticle inks. Solar Energy Materials and Solar Cells, 158, 130–137. https://doi.org/10.1016/j.solmat.2015.12.016
  • Rahi, A. A., Younis, U., Ahmed, N., Ali, M. A., Fahad, S., Sultan, H., Zarei, T., Danish, S., Taban, S., El Enshasy, H. A., Tamunaidu, P., Alotaibi, J. M., Alharbi, S. A., & Datta, R. (2022). Toxicity of Cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility. Saudi Journal of Biological Sciences, 29(2), 743–750. https://doi.org/10.1016/j.sjbs.2021.09.035
  • Rahmani, I., & Ghanaatshoar, M. (2022). Influence of laser pulse energy on CFTS thin film deposited by pulsed laser deposition. International Journal of Optics and Photonics, 16(2), 131–138. https://doi.org/10.52547/ijop.16.2.131
  • Sankapal, B. R., Mane, R. S., & Lokhande, C. D. (2000). Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (approximately 10 cm2) tin disulfide (SnS2) thin films. Materials Research Bulletin, 35(12), 2027–2035. https://doi.org/10.1016/S0025-5408(00)00405-0
  • Siddharth, G., Garg, V., Sengar, B. S., & Mukherjee, S. (2022). Progress in thin film solar cell and advanced technologies for performance improvement. In Encyclopedia of smart materials (Vol. 2, pp. 661–680). Elsevier. https://doi.org/10.1016/B978-0-12-815732-9.00115-7
  • Tripathi, S., Srivastva, R., Kumar, B., & Dwivedi, D. K. (2021). Deposition and characterization of stannite Cu2FeSn(S0·8Se0.2)4 thin film for potential absorber layer in solar cell application. Optical Materials (Amst), 120(August), 111430. https://doi.org/10.1016/j.optmat.2021.111430
  • Vanalakar, S. A., Patil, P. S., & Kim, J. H. (2018). Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: A review. Solar Energy Materials and Solar Cells, 182(April), 204–219. https://doi.org/10.1016/j.solmat.2018.03.021
  • Vanalakar, S. A., Shin, S. W., Agawane, G. L., Suryawanshi, M. P., Gurav, K. V., Patil, P. S., & Kim, J. H. (2014). Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films. Ceramics International, 40(9), 15097–15103. https://doi.org/10.1016/j.ceramint.2014.06.121
  • Wang, S., Ma, R., Wang, C., Li, S., & Wang, H. (2017). Fabrication and photoelectric properties of Cu2FeSnS4(CFTS) and Cu2FeSn(S,Se)2 (CFTSSe) thin films. Applied Surface Science, 422, 39–45. https://doi.org/10.1016/j.apsusc.2017.05.244
  • Wray, P. (2008). Solar POWer. American Ceramic Society Bulletin, 87(7), 31–33. https://doi.org/10.1002/9781119245964.ch9
  • Zaman, M. B., Chandel, T., & Poolla, R. (2019). Hydrothermal synthesis of Cu2FeSnS4 anisotropic nanoarchitectures: Controlled morphology for enhanced photocatalytic performance. Materials Research Express, 6(7), 075058. https://doi.org/10.1088/2053-1591/ab1797
  • Zhong, G., Tse, K., Zhang, Y., Li, X., Huang, L., Yang, C., Zhu, J., Zeng, Z., Zhang, Z., & Xiao, X. (2016). Induced effects by the substitution of Zn in Cu2ZnSnX4 (X = S and Se). Thin Solid Films, 603, 224–229. https://doi.org/10.1016/j.tsf.2016.02.005