694
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Design and analysis of a low profile, high gain rectangular microstrip patch antenna for 28 GHz applications

ORCID Icon, , &
Article: 2322827 | Received 24 Sep 2022, Accepted 20 Feb 2024, Published online: 03 Mar 2024

References

  • Awan, W. A., Naqvi, S. I., Hussain Naqvi, A., Abbas, S. M., Zaidi, A., & Hussain, N. (2021). Design and characterization of wideband printed antenna based on DGS for 28 GHz 5G applications. Journal of Electromagnetic Engineering and Science, 21(3), 177–183. https://doi.org/10.26866/jees.2021.3.r.24
  • Balanis, C. A. (2015). Antenna theory: Analysis and design. John Wiley & Sons.
  • Banday, Y., Mohammad Rather, G., & Begh, G. R. (2019). Effect of atmospheric absorption on millimetre wave frequencies for 5G cellular networks. IET Communications, 13(3), 265–270. https://doi.org/10.1049/iet-com.2018.5044
  • Dahlman, E., Mildh, G., Parkvall, S., Peisa, J., Sachs, J., Selén, Y., & Sköld, J. (2014). 5G wireless access: requirements and realization. IEEE Communications Magazine, 52(12), 42–47. https://doi.org/10.1109/MCOM.2014.6979985
  • Diawuo, H. A., & Jung, Y.-B. (2018). Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications. IEEE Antennas and Wireless Propagation Letters, 17(7), 1286–1290. https://doi.org/10.1109/LAWP.2018.2842242
  • Farahat, A. E., & Hussein, K. F. A. (2022). Dual-Band (28/38 GHz) Wideband MIMO Antenna for 5G Mobile Applications. IEEE Access, 10, 32213–32223. https://doi.org/10.1109/ACCESS.2022.3160724
  • Gad, N. H., & Vidmar, M. (2018). Design of a microstrip-fed printed-slot antenna using defected ground structures for multiband applications. The Applied Computational Electromagnetics Society Journal (ACES), 33(8), 854–860.
  • Gaid, A. S. A., Alhakimi, A. M. H., Sae’ed, O. Y. A., Alasadee, M. S., & Ali, A. A. (2019a). Compact and bandwidth efficient multi-band microstrip patch antennas for 5G applications. In International conference of reliable information and communication technology (pp. 663–672). Springer.
  • Gaid, A. S. A., Qaid, O. A. S., Ameer, M. A. A., Qaid, F. F. M., & AhMed, B. S. A. (2019b). Small and bandwidth efficient multi-band microstrip patch antennas for future 5G communications. In International conference of reliable information and communication technology (pp. 653–662). Springer.
  • Gaid, A. S. A., Qasem, M. H. M., Sallam, A. A., & Shayea, E. Q. M. (2021). Dual-band rectangular microstrip patch antenna with CSRR for 28/38 GHz bands applications. In International conference of reliable information and communication technology (pp. 717–727). Springer.
  • Gkonis, P. K., Trakadas, P. T., & Kaklamani, D. I. (2020). A comprehensive study on simulation techniques for 5g networks: State of the art results, analysis, and future challenges. Electronics, 9(3), 468. https://doi.org/10.3390/electronics9030468
  • Hong, W., Jiang, Z. H., Yu, C., Hou, D., Wang, H., Guo, C., Hu, Y., Kuai, L., Yu, Y., Jiang, Z., Chen, Z., Chen, J., Yu, Z., Zhai, J., Zhang, N., Tian, L., Wu, F., Yang, G., Hao, Z.-C., & Zhou, J. Y. (2021). The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE Journal of Microwaves, 1(1), 101–122. https://doi.org/10.1109/JMW.2020.3035541
  • Hu, R., Lili, W., Yi, Q., & Geng, W. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143. https://doi.org/10.1109/MWC.2014.7000981
  • Hussain, M., Mousa Ali, E., Jarchavi, S. M. R., Zaidi, A., Najam, A. I., Alotaibi, A. A., Althobaiti, A., & Ghoneim, S. S. M. (2022). Design and characterization of compact broadband antenna and its MIMO configuration for 28 GHz 5G applications. Electronics, 11(4), 523. https://doi.org/10.3390/electronics11040523
  • Ismail, F. F., El-Aasser, M. A., & Gad, N. H. (2022). A parasitic hat for microstrip antenna design based on defected structures for multiband applications. The Applied Computational Electromagnetics Society Journal (ACES), 37(5), 568–575. https://doi.org/10.13052/2022.ACES.J.370506
  • Kamal, M. M., Yang, S., Kiani, S. H., Anjum, M. R., Alibakhshikenari, M. o. h., Arain, Z. A., Jamali, A. A., Lalbakhsh, A., & Limiti, E. (2021). Donut-shaped mmwave printed antenna array for 5G technology. Electronics, 10(12), 1415. https://doi.org/10.3390/electronics10121415
  • Kamal, M. M., Yang, S., Kiani, S. H., Sehrai, D. A., Alibakhshikenari, M., Abdullah, M., Falcone, F., Limiti, E., & Munir, M. (2021). A novel hook-shaped antenna operating at 28 GHz for future 5G mmwave applications. Electronics, 10(6), 673. https://doi.org/10.3390/electronics10060673
  • Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. Ict Express, 1(3), 132–137. https://doi.org/10.1016/j.icte.2016.01.003
  • Mohammed, A. S. B., Kamal, S., Bin Ain, M. F., Ahmad, Z. A., Zahar, Z., & Hussin, R. (2020). Improving the gain performance of 2 × 2 U-slot air substrate patch antenna array operated at 28 GHz wideband resonance for 5G application. IOP Conference Series: Materials Science and Engineering, 917(1), 012083. https://doi.org/10.1088/1757-899X/917/1/012083
  • Mohammed, A. S. B., Kamal, S., Bin Ain, M. F., Hussin, R., Najmi, F., Sundi, S. A., Arifin Ahmad, Z., Ullah, U., Bin Mohamed Omar, M. F., & Othman, M. (2021). Mathematical model on the effects of conductor thickness on the centre frequency at 28 GHz for the performance of microstrip patch antenna using air substrate for 5G application. Alexandria Engineering Journal, 60(6), 5265–5273. https://doi.org/10.1016/j.aej.2021.04.050
  • Nahas, M. (2022). A super high gain l-slotted microstrip patch antenna for 5G mobile systems operating at 26 and 28 GHz. Engineering, Technology & Applied Science Research, 12(1), 8053–8057. https://doi.org/10.48084/etasr.4657
  • Paul, L. C., & Saha, H. K. (2021). A dual blade-shaped patch directional array antenna for 5G communication [Paper presentation]. 2021 international conference on electronics, communications and information technology (ICECIT), pp. 1–4. IEEE. https://doi.org/10.1109/ICECIT54077.2021.9641479
  • Paul, L. C., & Saha, H. K. (2021). A high gain array antenna for 28 GHz upper 5G application [Paper presentation]. 2021 international conference on electronics, communications and information technology (ICECIT), pp. 1–4. IEEE. https://doi.org/10.1109/ICECIT54077.2021.9641442
  • Paul, L. C., & Saha, H. K. (2021). A wideband microstrip line feed slotted patch antenna for 28 ghz 5g applications [Paper presentation]. 2021 International Conference on Electronics, Communications and Information Technology (ICECIT), pp. 1–4. IEEE. https://doi.org/10.1109/ICECIT54077.2021.9641230
  • Paul, L. C., Ali, M. H., Sarker, N., Mahmud, M. Z., Azim, R., & Islam, M. T. (2021). A wideband rectangular microstrip patch antenna with partial ground plane for 5G applications [Paper presentation]. 2021 Joint 10th international conference on informatics, electronics & vision (ICIEV) and 2021 5th international conference on imaging, vision & pattern recognition (icIVPR), pp. 1–6. IEEE. https://doi.org/10.1109/ICIEVicIVPR52578.2021.9564160
  • Paul, L. C., Das, S. C., Sarker, N., Azim, R., Ishraque, M. F., & Shezan, S. A. (2021). A wideband microstrip patch antenna with slotted ground plane for 5G application [Paper presentation]. 2021 international conference on science & contemporary technologies (ICSCT), pp. 1–5. IEEE. https://doi.org/10.1109/ICSCT53883.2021.9642597
  • Paul, L. C., Das, S. C., Sarker, N., Ishraque, M. F., Azim, R., & Mahmud, M. Z. (2021). A low profile microstrip patch antenna with DGS for 5G application [Paper presentation].2021 International Conference on Science & Contemporary Technologies (ICSCT), pp. 1–5. IEEE. https://doi.org/10.1109/ICSCT53883.2021.9642644
  • Paul, L. C., Saha, H. K., & Lee, W.-S. (2021). A Double T-shaped Wideband Microstrip Patch Antenna with a Modified Ground Plane for 5G Applications [Paper presentation]. 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), pp. 790–793. IEEE. https://doi.org/10.1109/InCAP52216.2021.9726442
  • Pirinen, P. (2014). A brief overview of 5G research activities [Paper presentation].1st International Conference on 5G for Ubiquitous Connectivity, pp. 17–22. IEEE. https://doi.org/10.4108/icst.5gu.2014.258061
  • Przesmycki, R., Bugaj, M., & Nowosielski, L. (2020). Broadband microstrip antenna for 5G wireless systems operating at 28 GHz. Electronics, 10(1), 1. https://doi.org/10.3390/electronics10010001
  • Raheel, K., Altaf, A., Waheed, A., Kiani, S. H., Sehrai, D. A., TuBBal, F., & Raad, R. (2021). E-shaped H-slotted dual band mmWave antenna for 5G technology. Electronics, 10(9), 1019. https://doi.org/10.3390/electronics10091019
  • Rahman, A., Yi, N. M., Ahmed, A. U., Alam, T., Singh, M. J., & Islam, Moha. M. M. T. (2016). A compact 5G antenna printed on manganese zinc ferrite substrate material. IEICE Electronics Express, 13(11), 20160377–20160377. https://doi.org/10.1587/elex.13.20160377
  • Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access.1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813
  • Samimi, M., Wang, K., Azar, Y., Wong, G. N., Mayzus, R., Zhao, H., Schulz, J. K., Sun, S., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City [Paper presentation].2013 IEEE 77th Vehicular Technology Conference (VTC Spring), In pp. 1–6. IEEE. https://doi.org/10.1109/VTCSpring.2013.6691812
  • Uwaechia, A. N., & Mahyuddin, N. M. (2020). A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access, 8, 62367–62414. https://doi.org/10.1109/ACCESS.2020.2984204
  • Wang, X., Kong, L., Kong, F., Qiu, F., Xia, M., Arnon, S., & Chen, G. (2018). Millimeter wave communication: A comprehensive survey. IEEE Communications Surveys & Tutorials, 20(3), 1616–1653. https://doi.org/10.1109/COMST.2018.2844322
  • Yau, K.-L A., Qadir, J., Wu, C., Imran, M. A., & Ling, M. H. (2018). Cognition-inspired 5G cellular networks: A review and the road ahead. IEEE Access, 6, 35072–35090. https://doi.org/10.1109/ACCESS.2018.2849446
  • Zikria, Y., Kim, S., Afzal, M., Wang, H., & Rehmani, M. (2018). 5G mobile services and scenarios: Challenges and solutions. Sustainability, 10(10), 3626. https://doi.org/10.3390/su10103626