284
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Tension control algorithms used in electrical wire manufacturing processes: a systematic review

&
Article: 2322837 | Received 14 Feb 2023, Accepted 20 Feb 2024, Published online: 18 Mar 2024

References

  • Abdul-Kareem, F. H., & Alyaa, S. H. (2015). Three-dimensional finite element analysis of wire drawing process. Universal Journal of Mechanical Engineering, 3(3), 71–82.
  • Abjadi, N. R., Soltani, J., Askari, J., & Markadeh, G. R. A. (2009). Nonlinear sliding-mode control of a multi-motor web-winding system without tension sensor. IET Control Theory & Applications, 3(4), 419–427. https://doi.org/10.1049/iet-cta.2008.0118
  • Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural selection theory for optimization problems. Symmetry (Basel), 12(11), 1758. https://doi.org/10.3390/sym12111758
  • Amimeur, H., Aouzellag, D., Abdessemed, R., & Ghedamsi, K. (2012). Sliding mode control of a dual-stator induction generator for wind energy conversion systems. International Journal of Electrical Power & Energy Systems, 42(1), 60–70. https://doi.org/10.1016/j.ijepes.2012.03.024
  • Armghan, H., Yang, M., Armghan, A., Ali, N., Wang, M. Q., & Ahmad, I. (2020). Design of integral terminal sliding mode controller for the hybrid AC/DC microgrids involving renewables and energy storage systems. International Journal of Electrical Power & Energy Systems, 119, 105857. https://doi.org/10.1016/j.ijepes.2020.105857
  • Baumgart, M. D., & Pao, L. Y. (2007). Robust control of nonlinear tape transport systems with and without tension sensors. Journal of Dynamic Systems, Measurement, and Control, 129(1), 41–55. https://doi.org/10.1115/1.2397151
  • Becerra, V. M. (2008). Optimal control. Scholarpedia, 3(1), 5354. https://doi.org/10.4249/scholarpedia.5354
  • Behrooz, F., Mariun, N., Marhaban, M. H., Radzi, M. A. M., & Ramli, A. R. (2018). Review of control techniques for HVAC systems-nonlinearity approaches based on fuzzy cognitive maps. Energies, 11(3), 495. https://doi.org/10.3390/en11030495
  • Benlatreche, A., Knittel, D., & Ostertag, E. (2005). State feedback controllers synthesis using BMI optimization for large scale web handling systems. In 16th IFAC World Congress (Vol. 38, pp. 27–32). https://doi.org/10.3182/20050703-6-CZ-1902.01545
  • Benlatreche, A., Knittel, D., & Ostertag, E. (2006). Robust decentralized control strategies for large scale web handling systems. Control Engineering Practice. 16(6), 736–750. https://doi.org/10.1016/j.conengprac.2006.03.003
  • Bi, C. (2010). Deterministic local alignment methods improved by a simple genetic algorithm. Neurocomputing, 73(13–15), 2394–2406. https://doi.org/10.1016/j.neucom.2010.01.023
  • Camacho, E. F., & Bordons, C. (2007). Model predictive control (2nd ed.). Springer.
  • Candanedo, J. A., & Athienitis, A. K. (2011). Predictive control of radiant floor heating and solar-source heat pump operation in a solar house. HVAC&R Research, 17(3), 235–256. https://doi.org/10.1080/10789669.2011.568319
  • Carrasco, R., & Valenzuela, M. A. (2006). Tension control of a two-drum winder using paper tension estimation. IEEE Transactions on Industry Applications, 42(2), 618–628. https://doi.org/10.1109/TIA.2005.863912
  • Cazac, V., & Nuca, I. (2015). Adjusting of the control system of asynchronous motor drive for wire drawing machine and winding mechanism. In Proceedings of the 10th International Conference on Electromechanical and Power Systems, pp. 286–291.
  • Cazac, V., Nuca, I., & Todos, P. (2016). AC drive control system of the wire drawing machine with DTC control and fuzzy controller. In Proceedings of the 13th International Conference on Development and Application Systems, pp. 126–129.
  • Chang, W. L., Lee, J. W., Kim, H. J., & Shin, K. H. (2008). A feed-forward tension control in drying section of roll-to-roll e-printing systems. In Proceedings of the 17th World Congress: The International Federation of Automatic Control, pp. 11865–11870. https://doi.org/10.3182/20080706-5-KR-1001.02009
  • Cheng, C. W., Hsiao, C. H., Chuang, C. C., Chen, K. C., & Tseng, W. P. (2005). Observer-based tension feedback control of direct drive web transport system. In IEEE International Conference on Mechatronics, pp. 745–750.
  • Chieh-Li, C., Kuo-Ming, C., & Chih-Ming, C. (2004). Modelling and control of a web-fed machine. Applied Mathematical Modelling, 28, 863–876.
  • Chu, X., Nian, X., & Fu, X. (2020). Tension control of web winding systems for speed-up phase. In Proceedings of the 39th Chinese Control Conference, pp. 1756–1761.
  • Chu, X., Nian, X., Sun, M., Wang, H., & Xiong, H. (2018). Robust observer design for multi-motor web-winding system. The Journal of the Franklin Institute, 355(12), 5217–5239. https://doi.org/10.1016/j.jfranklin.2018.05.002
  • Claveau, F., Chevrel, P., & Knittel, D. (2005). A two degrees of freedom h∞ controller design methodology for multi-motors web handling system. In Proceedings of the 2005 American Control Conference, pp. 1383–1388.
  • Claveau, P. F., Chevrel, P., & Knittel, K. (2008). A 2DOF gain-scheduled controller design methology for a multi-motor web transport system. Control Engineering Practice. 16, 09–22.
  • Damour, J. (2013). The mechanics of tension control. Converter Accessory Corporation Wind Gap.
  • Doghmane, M. Z., Kidouche, M., Habbi, H., & Lamrao, W. (2015). A new decomposition strategy approach applied for web winding system control optimization. In 3rd International Conference on Control, Engineering and Information Technology, pp. 1–6.
  • Dou, X., & Wang, W. (2010). Robust control of multistage printing systems. Control Engineering Practice. 18(3), 219–229. https://doi.org/10.1016/j.conengprac.2009.09.012
  • Doyle, B., Glover, J., Khargonekar, K., & Francis, P. (1989). State-space solutions to standard H2/and H infinity. IEEE Transactions on Automatic Control, 34(8), 831–847. https://doi.org/10.1109/9.29425
  • Duarte-Galvan, C., Torres-Pacheco, I., Guevara-Gonzalez, R. G., Romero-Troncoso, R. J., Contreras-Medina, L. M., Rios-Alcaraz, M. A., & Millan-Almaraz, J. R. (2012). Review. Advantages and disadvantages of control theories applied in greenhouse climate control systems. Spanish Journal of Agricultural Research, 10(4), 926–938. https://doi.org/10.5424/sjar/2012104-487-11
  • Duc, D. N., Thi, L. T., & Nguyen, T. L. (2020). Imperfect roll arrangement compensation control based on neural network for web handling systems. Engineering, Technology & Applied Science Research, 10(3), 5694–5699. https://doi.org/10.48084/etasr.3530
  • Duong, V. T., Kim, D. H., Kim, H. K., & Kim, S. B. (2015). Development of an active wire tension system for improving the performance of brushless direct current coil winding machine. International Journal of Advanced Mechatronic Systems, 6(5), 201–210. https://doi.org/10.1504/IJAMECHS.2015.072817
  • Dwivedula, R. V., Zhu, Y., & Pagilla, P. R. (2006). Characteristics of active and passive dancers: a comparative study. Control Engineering Practice. 14(4), 409–423. https://doi.org/10.1016/j.conengprac.2005.02.003
  • Dzib, J. T., Moo1, E. J. A., Bassam, A., Flota-Ba, M., Soberanis, M. A. E., Ricalde, L. J., & L’opez-Sanchez, M. J. (2016). Photovoltaic module temperature estimation: A comparison between artificial neural networks and adaptive neuro fuzzy inference systems models. In International Symposium on Intelligent Computing Systems (Vol. 10, pp. 46–60).
  • Eum, S., Lee, J., & Nam, K. (2016). Robust tension control of roll-to-roll winding equipment based on a disturbance observer. In 42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 625–630.
  • Fadhel S, S., & Noaman, S. F. (2017). The generalized backstepping control method for stabilizing and solving systems of multiple delay differential equations. In 1st Scientific International Conference, College of Science, Al-Nahrain University, pp 150–156. https://doi.org/10.22401/ANJS.00.1.20
  • Ganeshthangaraj, P., Muhammad, Z., Yang-Hoi, D., & Kyung-Hyun, C. (2012). Fuzzy logic-based control design for active dancer closed loop web tension control. International Journal of Applied Engineering Research and Application, 2(3), 438–443.
  • Gang, W. (2020). ESO-based terminal sliding mode control for uncertain full-car active suspension systems. International Journal of Automotive Technology, 21(3), 691–702. https://doi.org/10.1007/s12239-020-0067-y
  • Gassmann, V., & Knittel, D. (2007). Tension observers in elastic web unwinder-winder systems [Paper presentation]. Proceedings of ASME International Mechanical Engineering Congress and Exposition, p. 9. https://doi.org/10.1115/IMECE2007-42249
  • Gassmann, V., Knittel, D., Pagilla, P. R., & Bueno, M. A. (2009). H∞ unwinding web tension control of a strip processing plant using a pendulum dancer. In American Control Conference, pp. 901–906.
  • Gassmann, V., Knittel, D., Pagilla, P., & Bueno, M. (2012). A fixed-order h∞ tension control in the unwinding section of a web handling system using a pendulum dancer. IEEE Transactions on Control Systems Technology, 20(1), 173–180.
  • Gerngrob, M., Kohler, M., Endisch, C., & Kennel, R. (2020). Model-Based Control of Nonlinear Wire Tension in Dynamic Needle Winding Processes. In Proceedings of the 2020 IEEE International Conference on Industrial Technology, pp. 281–238.
  • Giannoccaro, N. I., Manieri, G., Martina, P., & Sakamoto, T. (2018). Genetic algorithm for decentralized PI controller tuning of a multi-span web transport system based on overlapping decomposition. In 2017 11th Asian Control Conference (ASCC), pp. 993–998.
  • Giannoccaro, N. I., Sakamoto, T., & Uchitomi, I. (2016). A gain scheduling of PI controllers of a multispan web transport system. International Journal on Smart Sensing and Intelligent Systems, 9(3), 1516–1533. https://doi.org/10.21307/ijssis-2017-928
  • Gruber, P., & Balemi, S. (2010). Overview of non-linear control methods. Swiss Society for Automatic Control.
  • Hailiang, H., Xiaohong, N., Shaozhang, X., Miaoping, S., & Hongyun, X. (2016). Robust decentralized control for large-scale web-winding systems: a linear matrix inequality approach. Transactions of the Institute of Measurement and Control, 39(7), 953–964.
  • Hailiang, H., Zhong, W., Xiaohong, N., & Jing, S. (2015). Robust decentralized control of web-winding systems without tension sensor. In Proceedings of the 34th Chinese Control Conference, pp. 8850–8854.
  • Han, J. (1998). Active disturbance rejection controller and its applications. Control and Decision, 13(1), 19–23.
  • Hanafi, N. O. S., Shin-Horng, C., Wai-Keat, H., Wen-Yee, C., Riduwan, M., & Nawawi, M. (2015). Investigation of model parameter variation for tension control of a multi motor wire winding system. In Proceedings of the 10th Asian Control Conference, pp. 1704–1709.
  • Haripriya, N., Kavitha, P., Muthukumar, N., Srinivasan, S., & Ramkumar, K. (2016). Design of PSO-based PI controller for tension control in web transport systems. Advances in Intelligent Systems and Computing, 398, 509–516.
  • Haripriya, N., Kavitha, P., Srinivasan, S., & Belikov, J. (2019). Evolutionary optimization-based fractional order controller for web transport systems in process industries. International Journal of Advanced Intelligence Paradigms, 12(3–4), 317–330. https://doi.org/10.1504/IJAIP.2019.098567
  • Harkegard, O. (2011). Flight control design using backstepping. Department of Electrical Engineering, Linköping University.
  • He, F., Wang, S., & Wang, C. (2018). Inhibition of tension vibration for winding tension control system. In 37th Chinese Control Conference (CCC).
  • Hongji, Z., Tang, H., & Shi, Y. (2018). Precision tension control technology of composite fiber tape winding molding. Journal of Thermoplastic Composite Materials, 31(7), 925–945. https://doi.org/10.1177/0892705717729018
  • Hongliang, K., Fenglong, K., Nan, C., Qiaoshi, M., Xin, W., Dongwei, Z., Nang, Q., & Bin, W. (2016). Parameters turning of ADRC based on neural network. In International Conference of Education, Management, Computer and Society, pp. 767–769.
  • Höschel, K., & Lakshminarayanan, V. (2019). Genetic algorithms for lens design: A review. Journal of Optics, 48(1), 134–144. https://doi.org/10.1007/s12596-018-0497-3
  • Hou, H., Nian, X., Chen, J., & Xiao, D. (2018). Decentralized coordinated control of elastic web winding systems without tension sensor. ISA Transactions, 80, 350–359. https://doi.org/10.1016/j.isatra.2018.06.006
  • Hou, Y. (2001). Novel control approaches for web tension regulation. Cleveland State University.
  • Huang, H., Xu, J., Sun, K., Deng, L., & Huang, C. (2020). Design and analysis of tension control system for transformer insulation layer winding. IEEE Access, 8, 1–1. https://doi.org/10.1109/ACCESS.2020.2995591
  • Huang, H., Zhao, X., & Zhang, X. (2022). Review article intelligent guidance and control methods for Missile Swarm. Computational Intelligence and Neuroscience, 2022, 8235148. https://doi.org/10.1155/2022/8235148
  • Huang, P. Y., Cheng, M. Y., Su, K. H., & Kuo, W. L. (2021). Control of roll-to-roll manufacturing based on sensorless tension estimation and disturbance compensation. Journal of the Chinese Institute of Engineers, 44(2), 89–103. https://doi.org/10.1080/02533839.2020.1856724
  • Hwang, H., Lee, J., Sangjune, E., & Kanghyun, N. (2019). Kalman-filter-based tension control design for industrial roll-to-roll system. Algorithms, 12(4), 86. https://doi.org/10.3390/a12040086
  • Hyunkyoo, K., & Kee-Hyun, S. (2018). Precise tension control of a dancer with a reduced-order observer for roll-to-roll manufacturing systems. Mechanism and Machine Theory, 122, 75–85.
  • Hyun-Kyoo, K., Chang-Woo, L., Kee-Hyun, S., & Sang-Chu, K. (2011). Modelling and matching design of a tension controller using pendulum dancer in roll-to-roll systems. IEEE Transactions on Industry Applications, 47(4), 1558–1566.
  • Idrissi, M., Salami, M., & Annaz, F. (2022). A review of quadrotor unmanned aerial vehicles: applications, architectural design and control algorithms. Journal of Intelligent & Robotic Systems, 104(2), 33. https://doi.org/10.1007/s10846-021-01527-7
  • Imamura, T., Kuroiwa, T., Mitsui, N., Terashima, K., & Takemoto, H. (2003). Development of hoop filament winding system with tension control. Transactions of the Japan Society of Mechanical Engineers Series C, 69(680), 906–913. https://doi.org/10.1299/kikaic.69.906
  • Iqbal, J., Ullah, M., Ghani, S., Khelifa, B., & Cukovic, S. (2017). Nonlinear control systems- a brief overview of historical and recent advances. Nonlinear Engineering, 6(4), 301–312.
  • Jafar, A., Fasih-Ur-Rehman, S., Fazal-Ur-Rehman, S., Ahmed, N., & Shehzad, M. (2016). A robust H∞ control for unmanned aerial vehicle against atmospheric turbulence [Paper presentation]. 2nd International Conference on Robotics and Artificial Intelligence.
  • Jeetae, K. (2006). Development of hardware simulator and controller for web transport process. Journal of Manufacturing Science and Engineering, 128(1), 378–381.
  • Jian, L., Xuesong, M., Tao, T., & Shanhui, L. (2011). Design tension controller of unwinding system based on BP neural network. Advanced Science Letters, 4(6), 2222–2226. https://doi.org/10.1166/asl.2011.1580
  • Jie-Shiou, L., Ming-Yang, C., Ke-Han, S., & Mi-Chi, T. (2018). Wire tension control of an automatic motor winding machine—An iterative learning sliding mode control approach. Robotics and Computer-Integrated Manufacturing, 50, 50–62.
  • Jinbao, H., Yongyi, H., Guo, S., & Fang, M. (2009). Tension robust control strategy based on self-optimizing algorithm. WSEAS Transactions on. Systems and Control, 4(3), 151–161.
  • Jorg, H., & Brunner, T. (2008). History, present situation and future trends in ensuring constant and consistent wire tension in stranding machines. Wire Journal International, 43(3), 146–151.
  • Kang, H., & Kee-Hyun, S. (2018). Precise tension control of a dancer with a reduced-order observer for roll-to-roll manufacturing system. Mechanism and Machine Theory, 122, 75–85.
  • Kang, C. G., & Lee, B. J. (2008). “MIMO tension modelling and control for roll-to-roll converting machines.” In Proceedings of the 17th World Congress the International Federation of Automatic Control, pp. 11877–11882. https://doi.org/10.3182/20080706-5-KR-1001.02011
  • Kang, H., Lee, C., Shin, K. H., & Kim, S. C. (2011). Modeling and matching design of a tension controller using pendulum dancer in roll-to-roll systems. IEEE Transactions on Industry Application, 47, 1558–1566.
  • Kasper, L. (2010). Fatigue properties of heavily drawn steel wires. Katholieke Universiteit Leuven, Arenberg.
  • Knittel, D., Arbogast, A., Vedrines, M., & Pagilla, P. (2006). Decentralized robust control strategies with model-based feedforward for elastic web winding system. In American Control Conference, pp. 68–75.
  • Knittel, D., Laroche, E., Gigan, D., & Koc, H. (2003). Tension control for winding systems with two degrees-of-freedom h∞ controllers. IEEE Transactions on Industry Applications, 39(1), 113–120. https://doi.org/10.1109/TIA.2002.807231
  • Koc, H., Knittel, D., de Mathelin, M., & Abba, G. (2002). Modeling and robust control of winding system for elastic webs. IEEE Transactions on Control Systems Technology, 10(2), 197–208. https://doi.org/10.1109/87.987065
  • Koc, H., Knittel, D., Mathelin, M. D., & Abba, G. (2000). Robust gain-scheduled control of winding systems. In Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187) (Vol. 4, pp. 4116–4119). IEEE.
  • Kravaris, C., Hahn, J., & Chu, Y. (2012). Advances and selected recent developments in state and parameter estimation. Computers & Chemical Engineering, 51, 111–123. https://doi.org/10.1016/j.compchemeng.2012.06.001
  • Kumar, V. E., Jovitha, J., & Ayyappan, S. (2013). Comparison of four state observer design algorithms for MIMO system. Archives of Control Sciences, 23(2), 131–144.
  • Kuo-Ming, C., & Yen-Yeu, L. (2013). Robust sliding mode control for a roll-to-roll machine. In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, pp. 405–409.
  • Kuppuswamy, S. (2004). Comparison of active and passive dancers for periodic tension disturbance attenuation in web processing lines. Oklahoma State University.
  • Kyung-Hyun, C., Tran, T. T., & Dong-Soo, K. (2011). Back-stepping controller-based web tension control for roll-to-roll web printed electronics system. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5(1), 7–21. https://doi.org/10.1299/jamdsm.5.7
  • Tseng, L. W. Hu, T. S., & Hu, Y. C. (2021). A Smart tool holder calibrated by machine learning for measuring cutting force in fine turning and its application to the specific cutting force of low carbon steel S15C. Machines, 9, 190. https://doi.org/10.3390/machines9090190
  • Larsen, J. S., & Jenson, P. K. (2007). Adaptive control with self-tuning for center driven web winders [MSc thesis, Aalborg University].
  • Larsson, J., Jansson, A., & Karlsson, P. (2018). Monitoring and evaluation of the wire drawing process using thermal imaging. International Journal of Advanced Manufacturing Technology, 3, 14.
  • Layadi, N., Djerioui, A., Zeghlache, S., Houari, A., Benkhoris, M. F., & Berrabah, F. (2017). Comparative study between sliding mode control and backstepping control for double star induction machine (DSIM) under current sensor faults. International Journal of Information Technology and Electrical Engineering, 6(6), 67–77.
  • Lee, C., Lee, J., Kang, H., & Shin, K. (2009). A study on the tension estimator by using register error in a printing section of roll to roll e-printing systems. Journal of Mechanical Science and Technology, 23(1), 212–220. https://doi.org/10.1007/s12206-008-0927-2
  • Li, Q., Bai, J., Fan, Y., & Zhang, Z. (2016). Study of wire tension control system based on closed loop PID control in HS-WEDM. The International Journal of Advanced Manufacturing Technology, 82(5–8), 1089–1097. https://doi.org/10.1007/s00170-015-7412-8
  • Li, X., Zhu, Z., Shen, G., & Tang, Y. (2021). Wire tension coordination control of electro-hydraulic servo driven double-rope winding hoisting systems using a hybrid controller combining the flatness-based control and a disturbance observer. Symmetry (Basel), 13(4), 716. https://doi.org/10.3390/sym13040716
  • Li, Z. (2015). Tension control system design of a filament winding structure based on fuzzy neural network. Engineering Review, 35(1), 9–17.
  • Lin, K. C. (2003). Observer-based tension feedback control with friction and inertia compensation. IEEE Transactions on Control Systems Technology, 11(1), 109–118.
  • Liu, Y., Fang, Q., & Yinglin, K. (2020). Modeling of tension control system with passive dancer roll for automated fiber placement. Mathematical Problems in Engineering, 2020, 1–11.
  • Lu, Y., & Pagilla, P. R. (2014 “Adaptive control of web tension in a heat transfer section of a roll-to-roll manufacturing process line,” In American Control Conference, pp. 1799–1804.
  • Lynch, A. F., Bortoff, S. A., & Röbenack, K. (2004). Nonlinear tension observers for web machines. Automatica, 40(9), 1517–1524. https://doi.org/10.1016/j.automatica.2004.03.021
  • Ma, P., Qin, J., Salsbury, J., & Xu, T. (2011). Demand reduction in building energy systems based on economic model predictive control. Chemical Engineering Sciences, 67(1), 92–100. https://doi.org/10.1016/j.ces.2011.07.052
  • Madoński, R., & Herman, P. (2015). Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Transactions, 56, 18–27. https://doi.org/10.1016/j.isatra.2014.11.008
  • Mahto, P. K., & Murmu, R. (2015). Temperature control for plastic extrusion process. International Journal of Innovative Research in Science, Engineering and Technology, 4(7), 5748–5758.
  • Manh, C. N., Van, M. T., Duc, D. N., Tung, L. N., Tien, D. P., & Thi, L. T. (2019). Neural network based adaptive control of web transport systems. In Proceedings of the International Conference on System Science and Engineering (ICSSE), pp. 124–128.
  • Maxime, L., Chanel, P. C., & François, C. (2015). “Backstepping control law application to path tracking with an indoor quadrotor,” In Proceedings of European Aerospace Guidance Navigation and Control Conference.
  • Mayr, A., Kißkalt, D., Lomakin, A., Graichen, K., & Franke, J. (2021). Towards an intelligent linear winding process through sensor integration and machin learning techniques. Procedia CIRP, 96, 80–85. https://doi.org/10.1016/j.procir.2021.01.056
  • Mirinejad, H., Welch, K. C., & Spicer, L. (2012). A review of intelligent control techniques in HVAC systems. In Proceedings of the 2012 IEEE Energytech Conference, pp. 1–5. https://doi.org/10.1109/EnergyTech.2012.6304679
  • Mohd Ali, J., Ha Hoang, N., Hussain, M. A., & Dochain, D. (2015). Review and classification of recent observers applied in chemical process systems. Computers & Chemical Engineering, 76, 27–41. https://doi.org/10.1016/j.compchemeng.2015.01.019
  • Muthukumar, N., Srinivasan, S., Ramkumar, K., Kannan, K., & Balas, V. E. (2016). Adaptive model predictive controller for web transport systems. Acta Polytechnica Hungarica, 13(3), 181–194. https://doi.org/10.12700/APH.13.3.2016.3.10
  • Muthukumar, N., Srinivasan, S., Ramkumar, K., Kavitha, P., & Balas, V. E. (2015). Supervisory GPC and evolutionary PI controller for web transport systems. Acta Polytechnica Hungarica, 12(5), 135–153.
  • Nagarkatti, S. P., Zhang, F., Rahn, C. D., & Dawson, D. M. (2000). Tension and speed regulation for axially moving materials. Journal of Dynamic Systems, Measurement, and Control, 122(3), 445–453. https://doi.org/10.1115/1.1286270
  • Naidu, D. S., & Rieger, C. G. (2014). Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systems—An overview: Part I: Hard control. HVAC&R Research, 17(1), 2–21. https://doi.org/10.1080/10789669.2011.540942
  • Nebos’ko, E. Y., Proskurnikov, A. V., & Yakubovich, V. A. (2010). Adaptive regulators for the control of an uncertain linear discrete time system with a reference model. Doklady Mathematics, 82(1), 667–670. https://doi.org/10.1134/S1064562410040423
  • Nishida, T., Sakamoto, T., & Giannoccaro, N. I. (2013). Self-tuning PI control using adaptive PSO of a web transport system with overlapping decentralized control. Electrical Engineering in Japan, 184(1), 56–65. https://doi.org/10.1002/eej.22366
  • Ofosu, R. A., Asiedu-Asante, A. B., & Adjei, R. B. (2020). Fuzzy logic based condition monitoring of a 3-phase induction motor. In IEEE AFRICON-2019, pp. 1–9.
  • Ofosu, R. A., Kaberere, K. K., Nderu, J. N., & Kamau, S. I. (2019). Design of BFA-optimized fuzzy electronic load controller for micro hydro power plants. Energy for Sustainable Development, 51, 13–20. https://doi.org/10.1016/j.esd.2019.04.003
  • Ofosu, R. A., Kamau, S. I., Nderu, J. N., Kaberere, K. K., & Muhia, A. M. (2016). Determination of optimal pi gains for fuzzy-pi controller using bacterial foraging algorithm. IOSR Journal of Electrical and Electronics Engineering, 11(2), 26–33.
  • Ofosu, R. A., Normanyo, E., & Obeng, L. (2020). Temperature control of heaters in cable extrusion machine using PSO-ANFIS controller. In IEEE AFRICON, pp. 1–9.
  • Ofosu, R. A., Normanyo, E., Abdul-Aziz, N., & Stickings, S. S. (2023). Speed control of an electrical cable extrusion process using artificial intelligence-based technique. Jurnal Nasional Teknik Elektro, 12(1), 42–52.
  • Ofosu, R. A., Normanyo, E., Kaberere, K. K., Kamau, S. I., & Otu, E. K. (2022). Design of an electronic load controller for micro hydro power plant using fuzzy-pi controller. Cogent Engineering, 9(2), 1–20.
  • Padmavathi, K., & Sri, R. K. (2015). Hybrid bacterial foraging and particle swarm optimization for detecting bundle branch block. SpringerPlus, 4(4), 481. https://doi.org/10.1186/s40064-015-1240-z
  • Pan, J., Wang, X., Chen, W., Xu, S., Shen, H., Ren, K., & Zhang, M. (2011). Electronic tension control of high-speed and active sending line based on fuzzy PID control. Advanced Materials Research, 338, 677–684. https://doi.org/10.4028/www.scientific.net/AMR.338.677
  • Park, J., & Lee, C. (2018). Effect of radial stress on the adhesive force of a wound roll in industrial roll-to-roll manufacturing system. International Journal of Precision Engineering and Manufacturing, 19(3), 411–415. https://doi.org/10.1007/s12541-018-0049-4
  • Park, K., Kim, H., & Hwang, J. H. (2001). Design of an adaptive tension velocity controller for winding processes. In International Symposium on Industrial Electronics, pp. 67–72.
  • Patelski, R., & Dutkiewicz, P. (2020). On the stability of ADRC for manipulators with modelling uncertainties. ISA Transactions, 102, 295–303. https://doi.org/10.1016/j.isatra.2020.02.027
  • Perduková, D., Fedor, P., Fedák, V., & Padmanaban, S. (2019). Lyapunov based reference model of tension control in a continuous strip processing line with multi-motor drive. Electronics, 8(1), 60. https://doi.org/10.3390/electronics8010060
  • Perera, D. W. U., Pfeiffer, C. F., & Skeie, N. O. (2014). Control of temperature and energy consumption in buildings- A review. International Journal of Energy and Environment, 5(4), 471–484.
  • Pourseif, T., & Mohajeri, M. (2020). Design of robust control for a motor in electric vehicles. IET Electrical Systems in Transportation, 10(1), 68–74. https://doi.org/10.1049/iet-est.2018.5084
  • Prabhakar, R. P., Siraskar, B. N., & Ramamurthy, V. D. (2007). Decentralized control of web processing lines. IEEE Transactions on Control Systems Technology, 15(1), 106–117. https://doi.org/10.1109/TCST.2006.883345
  • Prívara, S., Široký, J., Ferkl, L., & Cigler, J. (2011). Model predictive control of a building heating system. Energy and Buildings, 43(2–3), 564–572. https://doi.org/10.1016/j.enbuild.2010.10.022
  • Raul, P. R., & Pagilla, P. R. (2011). Modelling and frequency response of web tension with a pendulum dancer and comparison of load cell and dancer-based tension control systems. In Proceedings of the International Conference on Web Handling, pp. 85–104.
  • Raul, P. R., & Pagilla, P. R. (2015). Design and implementation of adaptive PI control schemes for web tension control in roll-to-roll manufacturing. ISA Transactions, 56, 1–12.
  • Raul, P. R., Manyam, S. G., Pagilla, P. R., & Darbha, S. (2015). Output regulation of nonlinear systems with application to roll-to-roll manufacturing systems. IEEE/ASME Transactions on Mechatronics, 20(3), 7.
  • Razmi, H., & Afshinfar, S. (2019). Neural network-based adaptive sliding mode control design for position and attitude control of a quadrotor UAV. Aerospace Science and Technology, 91, 12–27. https://doi.org/10.1016/j.ast.2019.04.055
  • Rehrl, M., & Horn, J. (2011). Temperature control for HVAC systems based on exact linearization and model predictive control. In Proceedings of the IEEE International Conference on Control Applications, pp. 1119–1124.
  • Ross, T. J. (2010). Fuzzy Logic with Engineering Applications (3rd ed.). John Wiley & Sons Ltd. Publications.
  • Rubio, J. D. J. (2016). Hybrid controller with observer for the estimation and rejection of disturbances. ISA Transactions, 65, 445–455. https://doi.org/10.1016/j.isatra.2016.08.026
  • Rui, Y., & Lingfeng, W. (2012). Optimal control strategy for HVAC system in building energy management. In PES T&D 2012.
  • Saeed, A. S., Younes, A. B., Islam, S., Dias, J., Seneviratne, L., & Cai, G. (2015). A review on the platform design, dynamic modeling and control of hybrid UAVs. In International Conference on Unmanned Aircraft Systems (ICUAS).
  • Safonov, M., Laub, A., & Hartmann, G. (1981). Feedback properties of multivariable systems: the role and use of the return difference matrix. IEEE Transactions on Automatic Control, 26(1), 47–65. https://doi.org/10.1109/TAC.1981.1102566
  • Şahin, M., & Erol, R. (2017). A comparative study of neural networks and ANFIS for forecasting attendance rate of soccer games. Mathematical and Computational Applications, 22(4), 43. https://doi.org/10.3390/mca22040043
  • Sakamoto, T., & Fujino, Y. (1995). Modelling and analysis of a web tension control system. In Proceedings of IEEE International Symposium on Industrial Electronics. https://doi.org/10.1109/ISIE.1995.497022
  • Sakamoto, T., & Izunihara, Y. (1997). Decentralized control strategies for web tension control system. In Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1086–1089.
  • Sanz, R., Garcia, P., Albertos, P., & Zhong, Q. C. (2017). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826–1840. https://doi.org/10.1002/rnc.3639
  • Shanhui, L., Xuesong, M., Fanfeng, K., & Kui, H. (2013). A decoupling control, algorithm for unwinding tension system based on active disturbance rejection control. Mathematical Problems in Engineering, 2013, 1–18.
  • Shankam, N., & Vivek, P. (2005). Novel method for dynamic yarn tension measurement and control in direct cabling process. Graduate Faculty of North Carolina State University.
  • Shin, K. H. (1991). Distributed control of tension in multi-span web transport systems. Oklahoma State University.
  • Shukla, M. K., Sharma, B. B., & Azar, A. T. (2018). Control and synchronization of a fractional order hyperchaotic system via backstepping and active backstepping approach. In Advances in nonlinear dynamics and chaos: Theory and application, pp. 559–595.
  • Sicar, F. M. P., & Hazzab, A. (2011). Decentralized nonlinear control strategies for disturbance rejection in winding systems. In Proceedings of the IEEE International Electric Machines and Drives Conference, pp. 230–235.
  • Siddique, N., & Tokhi, M. O. (2006). GA-based neural fuzzy control of flexiblelink manipulators. Engineering Letters, 13, 1–10.
  • Široký, J., Oldewurtel, F., Cigler, J., & Prívara, S. (2011). Experimental analysis of model predictive control for an energy efficient building heating system. Applied Energy. 88(9), 3079–3087. https://doi.org/10.1016/j.apenergy.2011.03.009
  • Song, Y. (2014). Intelligent PID controller based on fuzzy logic control and neural network technology for indoor environment quality improvement [PhD diss., University of Nottingham].
  • Sudhakar, P. R., & Shweta, V. (2019). Design and analysis of process parameters on multistage wire drawing process- a review. International Journal of Mechanical and Production Engineering Research and Development, 9(1), 403–412.
  • Tan, S., Wang, L., & Liu, J. (2014). Research on decoupling method of thickness and tension control in rolling process. In Proceedings of the 11th IEEE World Congress on Intelligent Control and Automation, pp. 4715–4717.
  • Tan, W., & Fu, C. (2015). Analysis of active disturbance rejection control for processes with time delay. In Proceedings of the American Control Conference (ACC), pp. 3962–3967.
  • Tasevski, G., & Petreski, Z. (2016). A study on the tuner roll impact on the wire drawing process. The International Journal of Industrial Engineering and Technology, 6(2), 17–22.
  • Tasevski, G., Petreski, Z., & Šiškovski, D. (2014). Simulation of an actuator and drive of a wire drawing machine’s mechatronic system using MATLAB/Simulink. Journal of Mechanical Engineering Science, 32(1), 1–7.
  • Thue, W. A. (2012). Electrical power cable engineering (1st ed.). CRC Press.
  • Tran, T. T., & Kyung-Hyun, C. (2014). A backstepping-based control algorithm for multi-span roll-to-roll web system. The International Journal of Advanced Manufacturing Technology, 70(1–4), 45–61. https://doi.org/10.1007/s00170-013-5168-6
  • Tran, T. T., Kyung-Hyun, C., Dong-Eui, C., & Dong-Soo, K. (2011). Web tension and velocity control of two-span roll-to-roll system for printed electronics. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 5(4), 329–346. https://doi.org/10.1299/jamdsm.5.329
  • Valenzuela, D., Carrasco, M. A., & Sbarbaro, R. (2006). Robust sheet tension tension estimation for paper winders. IEEE Transactions on Industry Applications, 16(6), 736–750.
  • Valenzuela, M. A., Bentley, J. M., & Lorenz, R. D. (2012). Estimating of sheet modulus of elasticity using drive field signals. IEEE Transactions on Industry Applications, 48(5), 58–72.
  • Valenzuela, M., Bentley, J. M., & Lorenz, R. D. (2002). Sensorless tension control in paper machines. In Conference Record of Annual Pulp and Paper Industry Technical Conference IEEE (Vol. 44, pp. 17–21).
  • Vasičkaninová, A., & Bakošová, M. (2016). Robust controller design for a heat exchanger using H2, H∞, H2/H∞, and n-synthesis approaches. Acta Chimica Slovaca, 9(2).
  • Vedrines, M., & Knitte, D. (2007). Design optimization using genetic algorithms of web handling systems: the case of the pendulum dancer mechanism [Paper presentation]. In Proceedings of ASME International Mechanical Engineering Congress and Exposition, pp. 1–8. https://doi.org/10.1115/IMECE2007-42068
  • Wang, B., Zuo, J., Wang, M., & Hao, H. (2008). Model reference adaptive tension control of web packaging material. In International Conference on Intelligent Computation Technology and Automation, pp. 395–398.
  • Wolfermann, W. (1995). Tension control of webs. A review of the problems and solutions in the present and future. In International Conference on Web Handling, pp. 198–229.
  • Wright, R. N. (2010). Wire technology: process engineering and metallurgy. Butterworth-Heinemann.
  • Xiao-Ming, X., Wu Xiang, Z., Lun, D. X., Zhang, M., & Shi Hou, W. (2018). Design and analysis of a novel tension control method for winding machine. The Chinese Journal of Mechanical Engineering, 3(101), 16.
  • Xie, G., Wang, J., Chen, W., & Xu, D. (2017). Tension control in unwinding system based on nonlinear dynamic matrix control algorithm. In 12th IEEE Conference on Industrial Electronics and Applications, pp. 1230–1235.
  • Xie, Y.-C., Huang, H., Hu, Y., & Zhang, G.-Q. (2016). Applications of advanced control methods in spacecrafts: progress, challenges, and future prospects. Frontiers of Information Technology & Electronic Engineering, 17(9), 841–861. https://doi.org/10.1631/FITEE.1601063
  • Xiong, H., Liao, Y., & Chu, X. (2018). Improved model free adaptive control for winding system. In 7th Data Driven Control and Learning Systems Conference, pp. 396–401.
  • Xiong, T., Cai, W., Xiong, Y., & Zhang, R. (2012). Dynamic matrix control of the lateral position of a moving web. In International Conference on Mechatronics and Automation (ICMA), pp. 1091–1096.
  • Yan, M. T. (2004). Modelling and adaptive control of the wire transport system in wire electrical discharge machining. Journal of Systems and Control Engineering, 218(1), 638–643.
  • Yang, M. (2012). Analysis and simulation of winding tension control system in shaftless web press. In Proceedings of the 31st Chinese Control Conference, pp. 1826–1830.
  • Yang, M., & Zhang, S. (2014). Research of tension control system in web press based on the fuzzy adaptive PID controller. In IEEE 9th Conference on Industrial Electronics and Applications, pp. 1204–1208.
  • Yanjun, X., Zhang, Z., Liu, Z., Liu, W., Gao, N., Zhou, W., & Mao, Z. (2022). Optimal analysis and application of the warp tension control system for a rapier loom. Textile Research Journal, 92(7–8), 1213–1225.
  • Yuan-Yu, L. (2013). Nylon tension PID control during raw tire assembly.
  • Yuet, F. P. (2002). Periodic tension disturbance attenuation in web process lines using active dancers. Oklahoma State University.
  • Zhang, Q., Wang, S., Zhang, A., Zhou, J., & Liu, Q. (2017). Improved PI neural network-based tension control for stranded wire helical springs manufacturing. Control Engineering Practice, 67, 31–42. https://doi.org/10.1016/j.conengprac.2017.06.010
  • Zhang, Y. (1982). Applying electromagnetic cluthes and brakes. Instruments & control system. Chinese Construction Industry Publishing House.
  • Zhao, P., Shi, Y., & Huang, J. (2017). Dynamics modeling and deviation control of the composites winding system. Mechatronics, 48, 12–29. https://doi.org/10.1016/j.mechatronics.2017.10.004
  • Zhao, W., & Ren, X. (2017). Adaptive robust control for four-motor driving servo system with uncertain nonlinearities. Control Theory and Technology, 15(1), 45–57. https://doi.org/10.1007/s11768-017-5120-7
  • Zhen-Cai, Z., Xiang, L., Gang, S., & Wei-Dong, Z. (2017). Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme. ISA Transactions, 72, 256–272. https://doi.org/10.1016/j.isatra.2017.11.007
  • Zheng, G. (2018). Control of high precision roll-to-roll manufacturing systems. University of Texas.
  • Zhewei, G., Sheng, Z., Kaijie, Z., & Chenliang, S. (2020). Fully-digital tension control system with PID algorithm for winding ultra-fine enameled wires. In IOP Conference Series: Materials Science and Engineering, p. 11.
  • Zhewei, G., Sheng, Z., Kaijie, Z., & Chenliang, S. (2020). Fully-digital tension control system with PID algorithm for winding ultrafine enameled wires. In IOP Conference Series: Materials Science and Engineering, pp. 1–11.
  • Zhi, C., Guojun, Z., & Hongzhi, Y. (2018). A high-precision constant wire tension control system for improving workpiece surface quality and geometric accuracy in WEDM. Precision Engineering, 54, 51–59.
  • Zhiqiang, W., Haibao, N., Tingna, S., Qiang, G., & Changliang, X. (2018). Adaptive PI parameters for two-motor winding system. Mathematical Problems in Engineering, 2018, 14.
  • Zhu, R. (2010). Precise tension control of fibre winding and placement machine using closed-loop tension control system. Textile Research Journal, 6(3), 47–42.
  • Zinelabidine, D. M., & Madjid, K. (2018). Decentralized controller robustness improvement using longitudinal overlapping decomposition, application to web winding system. Electronics & Electrical Engineering, 24(5), 10–18.
  • Zubair, M., Ponniah, G., Yang, Y. J., & Choi, K. H. (2014). Web tension regulation of multispan roll-to-roll system using integrated active dancer and load cells for printed electronics applications. Chinese Journal of Mechanical Engineering, 27(2).
  • Zulu, A., & John, S. (2014). Review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 4(14), 547–556. https://doi.org/10.4236/ojapps.2014.414053