577
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Machine learning techniques for vector control of permanent magnet synchronous motor drives

&
Article: 2323813 | Received 18 Apr 2023, Accepted 22 Feb 2024, Published online: 06 Mar 2024

References

  • Ahmadi, A., Nabipour, M., Mohammadi-Ivatloo, B., Amani, A. M., Rho, S., & Piran, M. J. (2020). Long-term wind power forecasting using tree-based learning algorithms. IEEE Access, 8, 151511–151522. https://doi.org/10.1109/ACCESS.2020.3017442
  • Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., & Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10, 48419–48433. https://doi.org/10.1109/ACCESS.2022.3171270
  • Asthana, P., Mishra, S., Gupta, N., Derawi, M., & Kumar, A. (2023). Prediction of student’s performance with learning coefficients using regression based machine learning models. IEEE Access, 11, 72732–72742. https://doi.org/10.1109/ACCESS.2023.3294700
  • Bao, Y., Xiong, T., & Hu, Z. (2014). Multi-step-ahead time series prediction using multiple-output support vector regression. Neurocomputing, 129, 482–493. https://doi.org/10.1016/j.neucom.2013.09.010
  • Brejl, M., & Princ, M. (2012). Using the PMSM vector control. Freescale semiconductor. Retrieved June 5, 2022, from https://www.nxp.com/docs/en/application-note/ AN2972.pdf
  • Butt, C. B., & Rahman, M. A. (2013). Intelligent speed control of interior permanent magnet motor drives using a single untrained artificial neuron. IEEE Transactions on Industry Applications, 49(4), 1836–1843. https://doi.org/10.1109/TIA.2013.2257973
  • Dahrouj, H., Alghamdi, R., Alwazani, H., Bahanshal, S., Ahmad, A. A., Faisal, A., Shalabi, R., Alhadrami, R., Subasi, A., Al-Nory, M. T., Kittaneh, O., & Shamma, J. S. (2021). An overview of machine learning-based techniques for solving optimization problems in communications and signal processing. IEEE Access, 9, 74908–74938. https://doi.org/10.1109/ACCESS.2021.3079639
  • Daliya, V. K., Ramesh, T. K., & Ko, S.-B. (2021). An optimised multivariable regression model for predictive analysis of diabetic disease progression. IEEE Access, 9, 99768–99780. https://doi.org/10.1109/ACCESS.2021.3096139
  • Duan, J., & Kashima, H. (2021). Learning to rank for multi-step ahead time-series forecasting. IEEE Access, 9, 49372–49386. https://doi.org/10.1109/ACCESS.2021.3068895
  • Farsi, B., Amayri, M., Bouguila, N., & Eicker, U. (2021). On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access, 9, 31191–31212. https://doi.org/10.1109/ACCESS.2021.3060290
  • Gutierrez-Gomez, L., Petry, F., & Khadraoui, D. (2020). A comparison framework of machine learning algorithms for mixed-type variables datasets: A case study on tire-performances prediction. IEEE Access, 8, 214902–214914. https://doi.org/10.1109/ACCESS.2020.3041367
  • Hambley, A. R. (2019). Electrical engineering - Principles & applications (6th ed.). Pearson Education.
  • Hannan, M. A., Ali, J. A., Ker, P. J., Mohamed, A., Lipu, M. S. H., & Hussain, A. (2018). Switching techniques and intelligent controllers for induction motor drive: issues and recommendations. IEEE Access, 6, 47489–47510. https://doi.org/10.1109/ACCESS.2018.2867214
  • Hu, J., Peng, T., Jia, M., Yang, Y., & Guan, Y. (2019). Study on electromechanical coupling characteristics of an integrated electric drive system for electric vehicle. IEEE Access, 7, 166493–166508. https://doi.org/10.1109/ACCESS.2019.2953310
  • Jaffar, F., Farid, T., Sajid, M., Ayaz, Y., & Khan, M. J. (2020). Prediction of drag force on vehicles in a platoon configuration using machine learning. IEEE Access, 8, 201823–201834. https://doi.org/10.1109/ACCESS.2020.3035318
  • Jawad, M., Nadeem, M. S. A., Shim, S.-O., Khan, I. R., Shaheen, A., Habib, N., Hussain, L., & Aziz, W. (2020). Machine learning based cost effective electricity load forecasting model using correlated meteorological parameters. IEEE Access, 8, 146847–146864. https://doi.org/10.1109/ACCESS.2020.3014086
  • Jung, J., Leu, V. Q., Do, T. D., Kim, E., & Choi, H. H. (2015). Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 30(2), 900–908. https://doi.org/10.1109/TPEL.2014.2311462
  • Karim, A., Azam, S., Shanmugam, B., Kannoorpatti, K., & Alazab, M. (2019). a comprehensive survey for intelligent spam email detection. IEEE Access, 7, 168261–168295. https://doi.org/10.1109/ACCESS.2019.2954791
  • Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neurocomputing, 73(10–12), 2006–2016. https://doi.org/10.1016/j.neucom.2009.09.020
  • Li, L., & Liu, Q. (2019). Research on IPMSM drive system control technology for electric vehicle energy consumption. IEEE Access, 7, 186201–186210. https://doi.org/10.1109/ACCESS.2019.2958944
  • Li, S., Won, H., Fu, X., Fairbank, M., Wunsch, D. C., & Alonso, E. (2020). Neural-network vector controller for permanent-magnet synchronous motor drives: Simulated and hardware-validated results. IEEE Transactions on Cybernetics, 50(7), 3218–3230. https://doi.org/10.1109/TCYB.2019.2897653
  • Liu, C., & Luo, Y. (2017). Overview of advanced control strategies for electric machines. Chinese Journal of Electrical Engineering, 3(2), 53–61.
  • Mahmud, K., Azam, S., Karim, A., Zobaed, S., Shanmugam, B., & Mathur, D. (2021). Machine learning based PV power generation forecasting in Alice Springs. IEEE Access, 9, 46117–46128. https://doi.org/10.1109/ACCESS.2021.3066494
  • Martínez, V., & Rocha, A. (2023). The Golem: A general data-driven model for oil & gas forecasting based on recurrent neural networks. IEEE Access, 11, 41105–41132. https://doi.org/10.1109/ACCESS.2023.3269748
  • Méndez, M., Merayo, M. G., & Núñez, M. (2023). Machine learning algorithms to forecast air quality: A survey. Artificial Intelligence Review, 56(9), 1–36. https://doi.org/10.1007/s10462-023-10424-4
  • Morais, R. M., & Pedro, J. (2018). Machine learning models for estimating quality of transmission in DWDM networks, IEEE/OSA. Journal of Optical Communications and Networking, 10(10), D84–D99. https://doi.org/10.1364/JOCN.10.000D84
  • Naz, F., Mccann, C., Fahim, M., Cao, T.-V., Hunter, R., Viet, N. T., Nguyen, L. D., & Duong, T. Q. (2023). Comparative analysis of deep learning and statistical models for air pollutants prediction in urban areas. IEEE Access, 11, 64016–64025. https://doi.org/10.1109/ACCESS.2023.3289153
  • Pillay, P., & Krishnan, R. (1989). Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 25(2), 265–273. https://doi.org/10.1109/28.25541
  • Pirbazari, A. M., Sharma, E., Chakravorty, A., Elmenreich, W., & Rong, C. (2021). An ensemble approach for multi-step ahead energy forecasting of household communities. IEEE Access, 9, 36218–36240. https://doi.org/10.1109/ACCESS.2021.3063066
  • Qutubuddin, M. D., & Yadaiah, N. (2017). Modeling and implementation of brain emotional controller for permanent magnet synchronous motor drive. Engineering Applications of Artificial Intelligence, 60, 193–203. https://doi.org/10.1016/j.engappai.2017.02.007
  • Qutubuddin, M. D., & Yadaiah, N. (2018). A new intelligent adaptive mechanism for sensorless control of permanent magnet synchronous motor drive. Biologically Inspired Cognitive Architectures, 24, 47–58. https://doi.org/10.1016/j.bica.2018.04.003
  • Raia, M. R., Ruba, M., Nemes, R. O., & Martis, C. (2021). Artificial neural network and data dimensionality reduction based on machine learning methods for PMSM model order reduction. IEEE Access, 9, 102345–102354. https://doi.org/10.1109/ACCESS.2021.3095668
  • Rind, S. J., Ren, Y., Hu, Y., Wang, J., & Jiang, L. (2017). Configurations and control of traction motors for electric vehicles: A review. Chinese Journal of Electrical Engineering, 3(3), 1–17. https://doi.org/10.23919/CJEE.2017.8250419
  • Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
  • Simeone, O. (2018). A very brief introduction to machine learning with applications to communication systems. IEEE Transactions on Cognitive Communications and Networking, 4(4), 648–664. https://doi.org/10.1109/TCCN.2018.2881442
  • Soliman, H. M. (2019). Improve the performance characteristics of the IPMSM under the effect of the varying loads. IET Electric Power Applications, 13(12), 1935–1945. https://doi.org/10.1049/iet-epa.2019.0195
  • Sorial, R. R., Soliman, M. H., Hasanien, H. M., & Talaat, H. E. A. (2021). A vector controlled drive system for electrically power assisted steering using Hall-effect sensors. IEEE Access, 9, 116485–116499. https://doi.org/10.1109/ACCESS.2021.3105609
  • Varoquaux, G., & Colliot, O. (2023). Evaluating machine learning models and their diagnostic value. Machine Learning for Brain Disorders. Neuromethods, 197, 601–630.
  • Zhang, C., Zhang, H., & Hu, X. (2019). A contrastive study of machine learning on funding evaluation prediction. IEEE Access, 7, 106307–106315. https://doi.org/10.1109/ACCESS.2019.2927517