325
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

Creating optimized machine learning pipelines for PV power generation forecasting using the grid search and tree-based pipeline optimization tool

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2323818 | Received 20 Apr 2023, Accepted 22 Feb 2024, Published online: 15 Mar 2024

References

  • Abraham, M. (2017). Encyclopedia of sustainable technologies. Elsevier.
  • Al-Dahidi, S., Ayadi, O., Alrbai, M., & Adeeb, J. (2019). Ensemble approach of optimized artificial neural networks for solar photovoltaic power prediction. IEEE Access,7, 81741–81758. https://doi.org/10.1109/ACCESS.2019.2923905
  • Bourhnane, S., Abid, M. R., Lghoul, R., Zine-Dine, K., Elkamoun, N., & Benhaddou, D. (2020). Machine learning for energy consumption prediction and scheduling in smart buildings. SN Applied Sciences, 2(2), 1–10. https://doi.org/10.1007/s42452-020-2024-9
  • Despotovic, M., Nedic, V., Despotovic, D., & Cvetanovic, S. (2015). Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52, 1869–1880. https://doi.org/10.1016/j.rser.2015.08.035
  • Illindala, M. S., Khasawneh, H. J., & Renjit, A. A. (2015). Flexible distribution of energy and storage resources: Integrating these resources into a microgrid. IEEE Industry Applications Magazine, 21(5), 32–42. https://doi.org/10.1109/MIAS.2014.2345838
  • Khasawneh, H. J., & Illindala, M. S. (2013 Quantitative and qualitative evaluation of flexible distribution of energy and storage resources [Paper presentation]. In 2013 IEEE Energy Conversion Congress and Exposition, 43–50. https://doi.org/10.1109/ECCE.2013.6646679
  • Khasawneh, H. J., & Illindala, M. S. (2014). Battery cycle life balancing in a microgrid through flexible distribution of energy and storage resources. Journal of Power Sources, 261, 378–388. https://doi.org/10.1016/j.jpowsour.2014.02.043
  • Kim, S.-Y., Lee, E.-J., Khatri, U., Shin, S., Kim, J.-I., & Kwon, G.-R. (2022 Comparative analysis of solar power generation prediction system using deep learning [Paper presentation]. In 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 383–386. IEEE. https://doi.org/10.1109/ICAIIC54071.2022.9722650
  • Lee, D., & Cheng, C.-C. (2016). Energy savings by energy management systems: A review. Renewable and Sustainable Energy Reviews, 56, 760–777. https://doi.org/10.1016/j.rser.2015.11.067
  • Liu, D., & Sun, K. (2019). Random forest solar power forecast based on classification optimization. Energy, 187, 115940. https://doi.org/10.1016/j.energy.2019.115940
  • MeteoBlue. (2022). “History Weather.” https://www.meteoblue.com/en/historyplus.
  • Olson, R. S. (2022). “TPOT—epistasislab.github.io.” http://epistasislab.github.io/tpot/.
  • Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, 485–492. https://doi.org/10.1145/2908812.2908918
  • Our World Data. (2021a). “Electricity production by source.” https://ourworldindata.org/grapher/electricity-prod-source-stacked.
  • Our World Data. (2021b). “Share of electricity production from fossil fuels.” https://ourworldindata.org/grapher/share-electricity-fossil-fuels.
  • Raj, A. (2020). “Unlocking the True Power of Support Vector Regression—towardsdatascience.com.” https://towardsdatascience.com/unlocking-the-true-power-of-support-vector-regression-847fd123a4a0.
  • Raschka, S., Liu, Y., Mirjalili, V., & Dzhulgakov, D. (2022a). Leveraging weak learners via adaptive boosting. Packt Publishing.
  • Raschka, S., Liu, Y., Mirjalili, V., & Dzhulgakov, D. (2022b). Using the kernel trick to find separating hyperplanes in a high-dimensional space. Packt Publishing.
  • Scikit Learn. (2022). “Preprocessing Data - PowerTransformer.” https://scikit-learn.org/stable/modules/preprocessing.html.
  • Setlhaolo, D., Xia, X., & Zhang, J. (2014). Optimal scheduling of household appliances for demand response. Electric Power Systems Research, 116, 24–28. https://doi.org/10.1016/j.epsr.2014.04.012
  • Shin, D., Ha, E., Kim, T., & Kim, C. (2021). Short-term photovoltaic power generation predicting by input/output structure of weather forecast using deep learning. Soft Computing, 25(1), 771–783. https://doi.org/10.1007/s00500-020-05199-7
  • Stephanie. (2022). “Ridge Regression: Simple Definition—statisticshowto.com.” https://www.statisticshowto.com/ridge-regression/.
  • Wang, F., Xuan, Z., Zhen, Z., Li, K., Wang, T., & Shi, M. (2020a). A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy Conversion and Management, 212, 112766. https://doi.org/10.1016/j.enconman.2020.112766
  • Wang, H., Liu, Y., Zhou, B., Li, C., Cao, G., Voropai, N., & Barakhtenko, E. (2020b). Taxonomy research of artificial intelligence for deterministic solar power forecasting. Energy Conversion and Management, 214, 112909. https://doi.org/10.1016/j.enconman.2020.112909
  • Zang, H., Cheng, L., Ding, T., Cheung, K. W., Liang, Z., Wei, Z., & Sun, G. (2018). Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network. IET Generation, Transmission & Distribution, 12(20), 4557–4567. https://doi.org/10.1049/iet-gtd.2018.5847