150
Views
0
CrossRef citations to date
0
Altmetric
Production & Manufacturing

Enhancing hybrid genetic algorithm performance in reducing steel usage for shipbuilding through sensitivity analysis

, &
Article: 2324609 | Received 17 Jun 2023, Accepted 23 Feb 2024, Published online: 11 Mar 2024

References

  • Ahmad, F., Al Awadh, M., & Noor, S. (2023). Optimum alternate material selection methodology for an aircraft skin. Chinese Journal of Aeronautics, 36(7), 476–488. https://doi.org/10.1016/j.cja.2023.05.019
  • Bai, Q., & Bai, Y. (2014). Subsea pipeline design, analysis, and installation. Gulf Professional Publishing.
  • Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms : Part 1, fundamentals. University Computing, 2(15), 1–16. https://doi.org/10.1017/CBO9781107415324.004
  • Futuyma, D. (2014). Evolutionary constraint and ecological consequences. Evolution, 64(7), 1865–1884. https://doi.org/10.1007/s13398-014-0173-7.2
  • He, H., Cheng, S., Chen, Y., & Lan, B. (2022). Compression performance analysis of multi-scale modified concrete based on response surface method. Case Studies in Construction Materials, 17, e01312. https://doi.org/10.1016/j.cscm.2022.e01312
  • Kwon, O., Lee, K. Y., Kim, G. S., & Chin, K. G. (2010). New trends in advanced high strength steel developments for automotive application. Materials Science Forum, 638–642, 136–141. https://doi.org/10.4028/www.scientific.net/MSF.638-642.136
  • Ma, X., Zhang, Q., Wang, J., & Yue, C. (2022). Sensitivity analysis and optimization of structural parameters of a phase change material based multi-tube heat exchanger under charging condition. Journal of Energy Storage, 56, 105940. https://doi.org/10.1016/j.est.2022.105940
  • Pichery, C. (2014). Sensitivity analysis. In Encyclopedia of toxicology (3rd edn) (pp. 236–237). ISBN: 9780123864543.
  • Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., & Zenkert, D. (2015). A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials and Design, 83, 704–712. https://doi.org/10.1016/j.matdes.2015.06.079
  • Putra, G. L., & Kitamura, M. (2021). Study on optimal design of hatch cover via a three-stage optimization method involving material selection, size, and plate layout arrangement. Ocean Engineering, 219, 108284. https://doi.org/10.1016/j.oceaneng.2020.108284
  • Putra, G. L., & Kitamura, M. (2023). Material cost minimization method of the ship structure considering material selection. Journal of Marine Science and Engineering, 11(3), 640. https://doi.org/10.3390/jmse11030640
  • Putra, G. L., Kitamura, M., & Takezawa, A. (2021). Study on optimal design of a folding-type hatch cover considering material selection. Journal of Ship Production and Design, 37(4), 237–247. https://doi.org/10.5957/JSPD.12190063
  • Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Computer Physics Communications, 145(2), 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1
  • Sen, P., & Yang, J.-B. (2011). Multiple criteria decision support in engineering design. Springer Science & Business Media. https://doi.org/10.1007/978-1-4471-3020-8
  • Sonsino, C. M. (2007). Light-weight design chances using high-strength steels. Materialwissenschaft Und Werkstofftechnik, 38(1), 9–22. https://doi.org/10.1002/mawe.200600090
  • Syed N. A., M. Bhargava, and K. V. Sai Srinadh. (2023). Material selection using knowledge-based expert system for racing bicycle forks. Intelligent Systems with Applications, 19, 200257. https://doi.org/10.1016/j.iswa.2023.200257
  • Tawfik, B. E., Leheta, H., Elhewy, A., & Elsayed, T. (2016). Weight reduction and strengthening of marine hatch covers by using composite materials. International Journal of Naval Architecture and Ocean Engineering, 9(2), 185–198. https://doi.org/10.1016/j.ijnaoe.2016.09.005
  • Ti, Z., Zhang, M., Wu, L., Qin, S., Wei, K., & Li, Y. (2018). Estimation of the significant wave height in the nearshore using prediction equations based on the response surface method. Ocean Engineering, 153, 143–153. https://doi.org/10.1016/j.oceaneng.2018.01.081
  • Xu, Q., Huang, L., Li, X., Li, Y., & Zhao, X. (2021). Parameter optimization of a rectangular cambered otter board using response surface method. Ocean Engineering, 220, 108475. https://doi.org/10.1016/j.oceaneng.2020.108475
  • Zhang, X., Shan, Y., & Zhang, J. (2023). Optimization and sensitivity analysis of double serpentine nozzles within confined layouts by response surface methodology. Thermal Science and Engineering Progress, 43, 102002. https://doi.org/10.1016/j.tsep.2023.102002