258
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Comparison of stability and thermophysical properties of CNT–GNP hybrid nanofluids using different surface modification techniques

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2325028 | Received 06 Feb 2024, Accepted 26 Feb 2024, Published online: 13 Mar 2024

References

  • Alizadeh, H., Pourpasha, H., Zeinali Heris, S., & Estellé, P. (2022). Experimental investigation on thermal performance of covalently functionalized hydroxylated and non-covalently functionalized multi-walled carbon nanotubes/transformer oil nanofluid. Case Studies in Thermal Engineering, 31, 101713. https://doi.org/10.1016/j.csite.2021.101713
  • Al-Janabi, A. S., Hussin, M., Abdullah, M. Z., & Ismail, M. A. (2022). Effect of CTAB surfactant on the stability and thermal conductivity of mono and hybrid systems of graphene and FMWCNT nanolubricant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129275. https://doi.org/10.1016/j.colsurfa.2022.129275
  • Almanassra, I. W., Manasrah, A. D., Al-Mubaiyedh, U. A., Al-Ansari, T., Malaibari, Z. O., & Atieh, M. A. (2020). An experimental study on stability and thermal conductivity of water/CNTs nanofluids using different surfactants: A comparison study. Journal of Molecular Liquids, 304, 111025. https://doi.org/10.1016/j.molliq.2019.111025
  • Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L. A., Afrand, M., & Wongwises, S. (2018). Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation. International Journal of Heat and Mass Transfer, 117, 474–486. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.036
  • Askari, S., Ettefaghi, E., Rashidi, A., Seif, A., Rudd, J. A., Alonso, J. A., & Khodabakhshi, S. (2021). Ultra-stable nanofluid containing Functionalized-Carbon Dots for heat transfer enhancement in Water/Ethylene glycol systems: Experimental and DFT studies. Energy Reports, 7, 4222–4234. https://doi.org/10.1016/j.egyr.2021.07.001
  • Bao, Y., Huang, A., Zheng, X., & Qin, G. (2023). Enhanced photothermal conversion performance of MWCNT/SiC hybrid aqueous nanofluids in direct absorption solar collectors. Journal of Molecular Liquids, 387, 122577. https://doi.org/10.1016/j.molliq.2023.122577
  • Borode, A. O., Ahmed, N. A., & Olubambi, P. A. (2019a). Application of Carbon-based Nanofluids in Heat Exchangers: Current Trends. Journal of Physics: Conference Series, 1378(3), 032061. https://doi.org/10.1088/1742-6596/1378/3/032061
  • Borode, A. O., Ahmed, N. A., & Olubambi, P. A. (2019b). Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Physics of Fluids, 31(7), 071301. https://doi.org/10.1063/1.5105380
  • Devireddy, S., Mekala, C. S. R., & Veeredhi, V. R. (2016). Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids. International Communications in Heat and Mass Transfer, 78, 121–126. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.002
  • Gallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Advanced Powder Technology, 31(2), 560–570. https://doi.org/10.1016/j.apt.2019.11.012
  • Hu, G., Ning, X., Hussain, M., Sajjad, U., Sultan, M., Ali, H. M., Shah, T. R., & Ahmad, H. (2021). Potential evaluation of hybrid nanofluids for solar thermal energy harvesting: A review of recent advances. Sustainable Energy Technologies and Assessments, 48, 101651. https://doi.org/10.1016/j.seta.2021.101651
  • Hussein Omar, A., Khairul, H., Saidur, R., Muhsan, S., Syed, S., & Alawi Omer, A. (2019). The influence of covalent and non-covalent functionalization of GNP based nanofluids on its thermophysical, rheological and suspension stability properties. RSC Advances, 9(66), 38576–38589. https://doi.org/10.1039/c9ra07811h
  • Kazemian, A., Salari, A., Ma, T., & Lu, H. (2022). Application of hybrid nanofluids in a novel combined photovoltaic/thermal and solar collector system. Solar Energy, 239, 102–116. https://doi.org/10.1016/j.solener.2022.04.016
  • Keklikcioglu Cakmak, N. (2020). The impact of surfactants on the stability and thermal conductivity of graphene oxide de-ionized water nanofluids. Journal of Thermal Analysis and Calorimetry, 139(3), 1895–1902. https://doi.org/10.1007/s10973-019-09096-6
  • Kim, S., Tserengombo, B., Choi, S., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011
  • Lei, J., Luo, Z., Qing, S., Huang, X., & Li, F. (2022). Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids. Powder Technology, 399, 117197. https://doi.org/10.1016/j.powtec.2022.117197
  • Li, X., Zeng, G., & Lei, X. (2020). The stability, optical properties and solar-thermal conversion performance of SiC-MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application. Solar Energy Materials and Solar Cells, 206, 110323. https://doi.org/10.1016/j.solmat.2019.110323
  • Ma, M., Zhai, Y., Yao, P., Li, Y., & Wang, H. (2021). Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids. Powder Technology, 379, 373–383. https://doi.org/10.1016/j.powtec.2020.10.089
  • Muruganandam, M., & Mukesh Kumar, P. C. (2020). Experimental analysis on internal combustion engine using MWCNT/water nanofluid as a coolant. Materials Today: Proceedings, 21, 248–252. https://doi.org/10.1016/j.matpr.2019.05.411
  • Nazari, M., Karami, M., & Ashouri, M. (2014). Comparing the thermal performance of water, Ethylene Glycol, Alumina and CNT nanofluids in CPU cooling: Experimental study. Experimental Thermal and Fluid Science, 57, 371–377. https://doi.org/10.1016/j.expthermflusci.2014.06.003
  • Rehman, A., Yaqub, S., Ali, M., Nazir, H., Shahzad, N., Shakir, S., Liaquat, R., & Said, Z. (2023). Effect of surfactants on the stability and thermophysical properties of Al2O3 + TiO2 hybrid nanofluids. Journal of Molecular Liquids, 391, 123350. https://doi.org/10.1016/j.molliq.2023.123350
  • Sajid, M. U., & Ali, H. M. (2018). Thermal conductivity of hybrid nanofluids: A critical review. International Journal of Heat and Mass Transfer, 126, 211–234. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021
  • Tiwari, A. K., Pandya, N. S., Said, Z., Öztop, H. F., & Abu-Hamdeh, N. (2021). 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: An experimental assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125918. https://doi.org/10.1016/j.colsurfa.2020.125918
  • Valan Arasu, A., Dhinesh Kumar, D., & Idrish Khan, A. (2019). Experimental investigation of thermal conductivity and stability of TiO2-Ag/water nanocompositefluid with SDBS and SDS surfactants. Thermochimica Acta, 678, 178308. https://doi.org/10.1016/j.tca.2019.178308
  • Van Trinh, P., Ngoc Anh, N., Tuan Hong, N., Ngoc Hong, P., Ngoc Minh, P., & Hung Thang, B. (2018). Experimental study on the thermal conductivity of ethylene glycol-based nanofluid containing Gr-CNT hybrid material. Journal of Molecular Liquids, 269, 344–353.https://doi.org/10.1016/j.molliq.2018.08.071
  • Xia, G., Jiang, H., Liu, R., & Zhai, Y. (2014). Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. International Journal of Thermal Sciences, 84, 118–124. https://doi.org/10.1016/j.ijthermalsci.2014.05.004
  • Xing, M., Yu, J., & Wang, R. (2016). Effects of surface modification on the pool boiling heat transfer of MWNTs/water nanofluids. International Journal of Heat and Mass Transfer, 103, 914–919. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.053
  • Xu, X., Xu, C., Liu, J., Fang, X., & Zhang, Z. (2019). A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability. Renewable Energy, 133, 760–769. https://doi.org/10.1016/j.renene.2018.10.073
  • Yellapu, G., Chachin Vishal, C. V., Pramod Kandoth, M., Saha, P., Bojja, R. R., Gandham, S., & Kanaparthi, R. (2019). Functionalized multi-walled carbon nanotubes based Newtonian Nano fluids for medium temperature heat transfer applications. Thermal Science and Engineering Progress, 12, 13–23. https://doi.org/10.1016/j.tsep.2019.04.014
  • Zhai, Y., Li, L., Wang, J., & Li, Z. (2019). Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technology, 343, 215–224. https://doi.org/10.1016/j.powtec.2018.11.051
  • Zhang, H., Qing, S., Xu, J., Zhang, X., & Zhang, A. (2022). Stability and thermal conductivity of TiO2/water nanofluids: A comparison of the effects of surfactants and surface modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, 128492. https://doi.org/10.1016/j.colsurfa.2022.128492