396
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Experimental investigation of the effect of using expanded polystyrene geofoam and geogrid in different forms on vertical earth pressure on high-filled cut-and-cover roadway tunnel

ORCID Icon & ORCID Icon
Article: 2326753 | Received 11 Jul 2023, Accepted 29 Feb 2024, Published online: 15 Mar 2024

References

  • Abdollahi, M., Tafreshi, S. N. M., & Leshchinsky, B. (2019). Experimental-numerical assessment of geogrid-EPS systems for protecting buried utilities. Geosynthetics International, 26(4), 333–353. https://doi.org/10.1680/jgein.19.00013
  • Abdullah, C. H., & Edil, T. B. (2007). Behaviour of geogrid-reinforced load transfer platforms for embankment on rammed aggregate piers. Geosynthetics International, 14(3), 141–153. https://doi.org/10.1680/gein.2007.14.3.141
  • Abu-Farsakh, M. Y., Chen, Q., & Yoon, S. (2008). Use of Reinforced Soil Foundation (RSF) to Support Shallow Foundation.
  • Adams, M. T., & Collin, J. G. (1997). Large model spread footing load tests on geosynthetic. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), 66–72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66)
  • Al-Barqawi, M., Aqel, R., Wayne, M., Titi, H., & Elhajjar, R. (2021). Polymer geogrids: A review of material, design and structure relationships. Materials, 14(16), 4745. https://doi.org/10.3390/ma14164745
  • Alotaibi, E., Omar, M., Shanableh, A., Zeiada, W., Fattah, M. Y., Tahmaz, A., & Arab, M. G. (2021). Geogrid bridging over existing shallow flexible PVC buried pipe – Experimental study. Tunnelling and Underground Space Technology, 113(March), 103945. https://doi.org/10.1016/j.tust.2021.103945
  • Arkawazi, S. A. F., & Hajiazizi, M. (2022). Using expanded polystyrene geofoam and tire-derived aggregate in different forms to reduce vertical earth pressure on high-filled cut-and-cover tunnels. Cogent Engineering, 9(1), 0–32. https://doi.org/10.1080/23311916.2022.2138100
  • Arkawazi, S. A. F., & Hajiazizi, M. (2023). Coupled effect of tire-derived aggregate and geogrid on lateral earth pressure on high-filled cut-and-cover tunnels. 1, 73–87. https://doi.org/10.22059/IJMGE.2022.346697.594987
  • Bathurst, R. J., Zarnani, S., & Gaskin, A. (2007). Shaking table testing of geofoam seismic buffers. Soil Dynamics and Earthquake Engineering, 27(4), 324–332. https://doi.org/10.1016/j.soildyn.2006.08.003
  • Bazzazian Bonab, S., Lajevardi, S. H., Saba, H. R., & Mirhosseini, S. M. (2021). The novel usage of EPS Geofoam as column material: A laboratory study. International Journal of Geosynthetics and Ground Engineering, 7(1), 1–14. https://doi.org/10.1007/s40891-020-00252-9
  • Beju, Y. Z., & Mandal, J. N. (2017a). Combined use of jute geotextile-EPS geofoam to protect flexible buried pipes: experimental and numerical studies. International Journal of Geosynthetics and Ground Engineering, 3(4), 1–20. https://doi.org/10.1007/s40891-017-0107-5.
  • Beju, Y. Z., & Mandal, J. N. (2017b). Expanded Polystyrene (EPS) Geofoam: Preliminary characteristic evaluation. Procedia Engineering, 189(May), 239–246. https://doi.org/10.1016/j.proeng.2017.05.038
  • Brown, S. F., Kwan, J., & Thom, N. H. (2007). Identifying the key parameters that influence geogrid reinforcement of railway ballast. Geotextiles and Geomembranes, 25(6)’, 326–335. https://doi.org/10.1016/j.geotexmem.2007.06.003
  • Chun, B. S., Lim, H.-S., Sagong, M., & Kim, K. (2004). Development of a hyperbolic constitutive model for expanded polystyrene (EPS) geofoam under triaxial compression tests. Geotextiles and Geomembranes, 22(4), 223–237. https://doi.org/10.1016/j.geotexmem.2004.03.005
  • Dong, Y., Han, J., & Bai, X. (2010). Numerical analysis of tensile behavior of geogrids with rectangular and triangular apertures. Geotextiles and Geomembranes, 29(2), 83–91. https://doi.org/10.1016/j.geotexmem.2010.10.007
  • Dugkov, M. (1998). Materials Research on EPS20 and EPS15 Under Representative Conditions in Pavement Structures. Geotextiles and Geomembranes, 15(1997), 147–181.
  • Dugkov, M., & Scarpas, A. (1998). Three-Dimensional Finite Element Analysis of Flexible Pavements with an (Open Joint in the) EPS Sub-Base. Geotextiles and Geomembranes, 15(1997), 29–38.
  • Fakhraldin, M. K. (2012 Measurement of tensile properties of geogrids [Paper presentation]. Second International Conference on Geotechnique, Construction Materials and Environmen.
  • Farnsworth, C. B., Bartlett, S. F., Negussey, D., & Stuedlein, A. W. (2008). Rapid construction and settlement behavior of embankment systems on soft foundation soils. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 289–301. https://doi.org/10.1061/_ASCE_1090-0241_2008_134:3_289
  • Fattah, M. Y., Zbar, B. S., & Al-Kalali, H. H. M. (2023). Experimental investigation of the performance of buried flexible pipe in reinforced sand. Slovak Journal of Civil Engineering, 31(2), 48–60. https://doi.org/10.2478/sjce-2023-0012
  • Gade, V. K., & Dasaka, S. M. (2022). Short- and long-term behavior of EPS geofoam in reduction of lateral earth pressure on rigid retaining wall subjected to surcharge loading. Geotextiles and Geomembranes, 50(5), 868–880. https://doi.org/10.1016/j.geotexmem.2022.05.002
  • Gao, H., Chen, G., & Wang, Z. (2011). The mechanical behaviors of the embankment filled with EPS composite soil. Advanced Materials Research, 368-373, 2813–2818. https://doi.org/10.4028/www.scientific.net/AMR.368-373.2813
  • Gao, H., Liu, J., & Liu, H. (2011). Geotechnical properties of EPS composite soil. International Journal of Geotechnical Engineering, 5(1), 69–77. https://doi.org/10.3328/IJGE.2011.05.01.69-77
  • Gu, A. Q., Guo, T. T., & Wang, X. P. (2005). Experimental study on reducing load measurement using EPS of culvert under high-stacked soil. Chinese Journal of Geotechnical Engineering, 27(5), 2005.
  • Han, J., & Akins, K. (2002). Use of geogrid-reinforced and pile-supported earth structures. Deep Foundations, 0, 668–679. https://doi.org/10.1061/40601(256)48
  • Han, J., & Leshchinsky, D. (2010). Analysis of back-to-back mechanically stabilized earth walls. Geotextiles and Geomembranes, 28(3), 262–267. https://doi.org/10.1016/j.geotexmem.2009.09.012
  • Hassan, D., Saidani, M., & Shibani, A. (2021). Behaviour of a Foam Mixture as a Lightweight Construction Material. International Journal of Geosynthetics and Ground Engineering, 7(3), 1–9. https://doi.org/10.1007/s40891-021-00296-5
  • Hatami, K., & Witthoeft, A. F. (2008). A numerical study on the use of geofoam to increase the external stability of reinforced soil walls. Geosynthetics International, 15(6), 452–470. https://doi.org/10.1680/gein.2008.15.6.452
  • Hazarika, H. (2006). Stress – strain modeling of EPS geofoam for large-strain applications. Geotextiles and Geomembranes, 24(2), 79–90. https://doi.org/10.1016/j.geotexmem.2005.11.003
  • Helstrom, C. L., Humphrey, D. N., & Hayden, S. A. (2006 Geogrid Reinforced Pavement Structure in a Cold Region [Paper presentation]. Cold Regions Engineering, (401), pp. 1–12. https://doi.org/10.1061/40836(210)57
  • Horvath, J. S. (1998). The Compressible Inclusion Function of EPS Geofoam. Geotextiles and Geomembranes, 15(1-3), 77–120. https://doi.org/10.1016/S0266-1144(97)00008-3
  • Horvath, J. S. (2004 Geofoam Compressible Inclusions: The New Frontier In Earth Retaining Structures [Paper presentation].Asce,. https://doi.org/10.1061/40744(154)187
  • Huang, J., & Han, J. (2009). 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotextiles and Geomembranes, 27(4), 272–280. https://doi.org/10.1016/j.geotexmem.2009.01.001
  • Huang, X., & Negussey, D. (2011). EPS geofoam design parameters for pavement structures.
  • Jili, Q., Huan, T., Weiqing, Q., Guoqi, H., Hongmei, L., Abulimiti, P., Maimaitiyusupu, S., & Batugin, A. (2022). Modification of mechanical properties of Shanghai clayey soil with expanded polystyrene. Science and Engineering of Composite Materials, 29(1), 37–49. https://doi.org/10.1515/secm-2022-0004
  • Jutkofsky, W. S., Sung, J. T., & Negussey, D. (2000). Stabilization of Embankment Slope with Geofoam. Transportation Research Record: Journal of the Transportation Research Board, 1736(1), 94–102. https://doi.org/10.3141/1736-12
  • Kang, J., Parker, F., & Yoo, C. H. (2007). Soil-Structure Interaction and Imperfect Trench Installations for Deeply Buried Concrete Pipes. Journal of Geotechnical and Geoenvironmental Engineering, 133(3), 277–285. https://doi.org/10.1061/(asce)1090-0241(2007)133:3(277)
  • Khan, M. I., & Meguid, M. A. (2018). Experimental investigation of the shear behavior of EPS geofoam. International Journal of Geosynthetics and Ground Engineering, 4(2), 0. https://doi.org/10.1007/s40891-018-0129-7
  • Khan, M. I., & Meguid, M. A. (2021). A Numerical study on the role of EPS geofoam in reducing earth pressure on retaining structures under dynamic loading. International Journal of Geosynthetics and Ground Engineering, 7(3) https://doi.org/10.1007/s40891-021-00304-8
  • Khan, M. R., & Dasaka, S. M. (2020a). Amplification of vibrations in high-speed railway embankments by passive ground vibration barriers. International Journal of Geosynthetics and Ground Engineering, 6(3), 1–15. https://doi.org/10.1007/s40891-020-00217-y
  • Khan, M. R., & Dasaka, S. M. (2020b). EPS geofoam as a wave barrier for attenuating high-speed train-induced ground vibrations: A single-wheel analysis. International Journal of Geosynthetics and Ground Engineering, 6(4) https://doi.org/10.1007/s40891-020-00230-1
  • Khodayari, A. H., & Dabiri, R. (2018). Effects of geogrid layers on improving bearing capacity of vibrating machines foundation. Journal of New Approaches in Civil Engineering, 2(2), 11–26.
  • Kinney, T. C., Danielle, K. S., & Schuler, J. (1998). Using geogrids for base reinforcement as measured by falling weight deflectometer in full-scale laboratory study. Transportation Research Record: Journal of the Transportation Research Board, 1611(1), 70–77. https://doi.org/10.3141/1611-09
  • Koerner, R. (2005). Designing with Geosynthetics (5th edn.). Pearson Prentice Hall.
  • Leo, C. J., Kumruzzaman, M., Wong, H., & Yin, J. H. (2008). Behavior of EPS geofoam in true triaxial compression tests. Geotextiles and Geomembranes, 26(2), 175–180. https://doi.org/10.1016/j.geotexmem.2007.10.005
  • Li, S., Ho, I.-H., Ma, L., Yao, Y., & Wang, C. (2019). Load reduction on high-filled cut-and-cover tunnel using discrete element method. Computers and Geotechnics, 114(March), 103149. https://doi.org/10.1016/j.compgeo.2019.103149
  • Li, S., Han, G., Ho, I.-H., Ma, L., Wang, Q., & Yu, B. (2020). Coupled effect of cross-sectional shape and load reduction on high-filled cut-and-cover tunnels considering soil–structure interaction. International Journal of Geomechanics, 20(7), 04020082. https://doi.org/10.1061/(asce)gm.1943-5622.0001696
  • Li, S., Yao, Y., Ho, I.-H., Ma, L., Wang, Q., & Wang, C. (2020). Coupled effect of expanded polystyrene and geogrid on load reduction for high-filled cut-and-cover tunnels using the discrete-element method. International Journal of Geomechanics, 20(6), 04020052. https://doi.org/10.1061/(asce)gm.1943-5622.0001683
  • Li, S., Jianie, Y., Ho, I.-H., Ma, L., Wang, Q., & Yu, B. (2020). Experimental and numerical analyses for earth pressure distribution on high-filled cut-and-cover tunnels. KSCE Journal of Civil Engineering, 24(6), 1903–1913. https://doi.org/10.1007/s12205-020-1693-7
  • Marston, A., & Anderson, A. O. (1913). The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe. Iowa Engineering Experiment Station, Iowa State College. https://doi.org/10.1785/gssrl.8.3.1a
  • Marston, M. G. (1930). The theory of external loads on closed conduits in the light of the latest experiments. Highway Research Board Proceeding, 9, 138–170. https://trid.trb.org/view/103945
  • McAffee, R. P., & Valsangkar, A. J. (2008). Field performance, centrifuge testing, and numerical modelling of an induced trench installation. Canadian Geotechnical Journal, 45(1), 85–101. https://doi.org/10.1139/T07-086
  • McGuigan, B. L., & Valsangkar, A. J. (2010). Centrifuge testing and numerical analysis of box culverts installed in induced trenches. Canadian Geotechnical Journal, 47(2), 147–163. https://doi.org/10.1139/T09-085
  • Meguid, M. A., Ahmed, M. R., Hussein, M. G., & Omeman, Z. (2017). Earth Pressure Distribution on a Rigid Box Covered with U-Shaped Geofoam Wrap. International Journal of Geosynthetics and Ground Engineering, 3(2), 0. https://doi.org/10.1007/s40891-017-0088-4
  • Meguid, M. A., & Ahmed, M. R. (2020). Earth pressure distribution on buried pipes installed with geofoam inclusion and subjected to cyclic loading. International Journal of Geosynthetics and Ground Engineering, 6(1), 1–8. https://doi.org/10.1007/s40891-020-0187-5
  • Meguid, M. A., & Hussein, M. G. (2017). A numerical procedure for the assessment of contact pressures on buried structures overlain by EPS geofoam inclusion. International Journal of Geosynthetics and Ground Engineering, 3(1), 1–14. https://doi.org/10.1007/s40891-016-0078-y
  • Murashev, A., Easton, M., & Kathirgamanathan, P. (2013). Advanced Numerical Modelling of Geogrid-reinfroced Rockfall Protection Embankments [Paper presentation]. Proceedings 19th NZGS Geotechnical Symposium.
  • Nawghare, S. M., & Mandal, J. N. (2020). Effectiveness of Expanded Polystyrene (EPS) beads size on fly ash properties. International Journal of Geosynthetics and Ground Engineering, 6(1), 1–11. https://doi.org/10.1007/s40891-020-0189-3
  • Ossa, A., & Romo, M. P. (2009). Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam. Geosynthetics International, 16(5), 327–338. https://doi.org/10.1680/gein.2009.16.5.327
  • Ossa, A., & Romo, M. P. (2011). Dynamic characterization of EPS geofoam. Geotextiles and Geomembranes, 29(1), 40–50. https://doi.org/10.1016/j.geotexmem.2010.06.007
  • Padade, A. H., & Mandal, J. N. (2012). Behavior of expanded polystyrene (EPS) geofoam under triaxial loading conditions. Electronic Journal of Geotechnical Engineering, 17 S, 2542–2553.
  • Qingbiao, W., Cong, Z., Tiantian, W., Yun, B., Rongshan, L. Ü., Lei, X., Junxian, Z., Zhongjing, H., Fei, X., Tao, Z., Zhen, C., Lingyu, T., & Hui, W. (2015). The mechanical property of bidirectional geogrid and its application research in retaining wall design. The Open Construction and Building Technology Journal, 9(1), 214–222. https://doi.org/10.2174/1874836801509010214
  • Ram Rathan Lal, B., & Nawkhare, S. S. (2016). Experimental study on plastic strips and EPS beads reinforced bottom ash based material. International Journal of Geosynthetics and Ground Engineering, 2(3), 1–12. https://doi.org/10.1007/s40891-016-0066-2
  • Rodríguez, L. M., Arroyo, M., & Cano, M. M. (2018). Use of tire derived aggregate in tunnel cut-and-cover. Canadian Geotechnical Journal, 55(7), 968–978. https://doi.org/10.1139/cgj-2017-0446
  • Rousé, P. C. (2018). Numerical modeling and analysis of pullout tests of sheet and geogrid inclusions in sand. The university of British Columbia.
  • Shafikhani, A., Bheemasetti, T. V., & Puppala, A. J. (2017). Effect of seasonal changes on a hybrid soil–geofoam embankment system. International Journal of Geosynthetics and Ground Engineering, 3(4),. https://doi.org/10.1007/s40891-017-0116-4
  • Sinmez, B. (2019). Characterization of Geogrid Reinforced Ballast Behavior Through Finite Element Modeling, Scholar Commons. University of South Florida.
  • Sladen, J. A., & Oswell, J. M. (1988). The induced trench method - a critical review and case history. Canadian Geotechnical Journal, 25(3), 541–549. https://doi.org/10.1139/t88-059
  • Spangler, M. G. (1958 A practical application of the imperfect ditch method of construction [Paper presentation]. 37th Annual Meeting of the Highway Research Board), Highway Research Board (pp. 271–277).
  • Sravanam, P. P., & Mouli, S. (2022). Optimum Orientation of Geofoam Inclusion in the Retaining Wall Optimum Orientation of Geofoam Inclusion in the Retaining. Advancements in Sustainable Materials and Infrastructure, 1–9. https://doi.org/10.1088/1755-1315/1086/1/012016
  • Stark, T. D., Arellano, D., & Horvath, J. S. (2004). Geofoam Applications in the Design and Construction of Highway Embankments, Prepared for : Submitted by : Urbana, Illinois. Transportation Research Board of The National Academies.
  • Tang, X., Chehab, G. R., & Palomino, A. (2008). Evaluation of geogrids for stabilising weak pavement subgrade. International Journal of Pavement Engineering, 9(6), 413–429. https://doi.org/10.1080/10298430802279827
  • Taylor, R. K. (1973). Induced-trench method of culvert installation. Highw Research Record, 443, 15–31.
  • Tharani, K., Mahendran, N., & Vijay, T. J. (2019). Experimental investigation of geogrid reinforced concrete slab. International Journal of Engineering and Advanced Technology, 8(3S), 158–163.
  • Unipod. (2021). Unibloc GeoFoam by Unipod. Truganina, Vic 3029 Australia: Unipod. https://www.unipod.com.au/.
  • Vaslestad, J., Johansen, T. H., & Holm, W. (1993). Load reduction on rigid culverts beneath high fills: long-term behavior. Transportation Research Record, 1415, 58–68.
  • Vorobjovas, V., & Vaitkus, A. (2017). 3D-FEM analysis on geogrid reinforced flexible pavement roads 3D-FEM analysis on geogrid reinforced flexible pavement roads. Earth and Environmental Science, 95, 022024. https://doi.org/10.1088/1755-1315/95/2/022024
  • Wong, H., & Leo, C. J. (2006). A simple elastoplastic hardening constitutive model for EPS geofoam. Geotextiles and Geomembranes, 24(5), 299–310. https://doi.org/10.1016/j.geotexmem.2006.03.007
  • Wood, D. M. (2017). Geotechnical modelling, Geotechnical Modelling. https://doi.org/10.1201/9781315273556
  • Xian Yima Optoelec Limited Company. (2022). DM-YB1808/20/40/60/80 Dynamic and Static Strain Test System (pp. 1–7). Xian Yima Optoelec Co., Ltd.
  • Xiaoming, Y. (2012). An assessment of the geometry effect of geosynthetics for base course reinforcements. International Journal of Transportation Science and Technology, 1(3), 247–257. https://doi.org/10.1260/2046-0430.1.3.247
  • Xie, M., Zheng, J., Shao, A., Miao, C., & Zhang, J. (2020). Study of lateral earth pressures on nonyielding retaining walls with deformable geofoam inclusions. Geotextiles and Geomembranes, 48(5), 684–690. https://doi.org/10.1016/j.geotexmem.2020.05.003
  • Zarnani, S., & Bathurst, R. J. (2007). Experimental investigation of EPS geofoam seismic buffers using shaking table tests. Geosynthetics International, 14(3), 165–177. https://doi.org/10.1680/gein.2007.14.3.165
  • Zarnani, S., & Bathurst, R. J. (2008). Numerical modeling of EPS seismic buffer shaking table tests. Geotextiles and Geomembranes, 26(5), 371–383. https://doi.org/10.1016/j.geotexmem.2008.02.004
  • Zhou, W-h., Lao, J-y., Huang, Y., & Chen, R. (2016). Three-dimensional finite element modelling of soil arching in pile-supported geogrid-reinforced embankments. Procedia Engineering, 143(Ictg), 607–614. https://doi.org/10.1016/j.proeng.2016.06.081
  • Zhuo, B., Wang, F., Fang, Y., Chen, Y., & Ning, G. (2020). Analysis of cracking development and mechanical characteristics of high-filled cut-and-cover tunnel. KSCE Journal of Civil Engineering, 24(8), 2519–2532. https://doi.org/10.1007/s12205-020-0247-3