193
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Efficiency of RCC piles with helical grooves subjected to axial and lateral loads in cohesionless soil

ORCID Icon, ORCID Icon &
Article: 2326769 | Received 19 Jun 2023, Accepted 29 Feb 2024, Published online: 11 Mar 2024

References

  • Abbasa, J. M., Chik, Z., & Taha, M. R. (2015). Influence of axial load on the lateral pile groups response in cohesionless and cohesive soil. Frontiers of Structural and Civil Engineering, 9(2), 176–193. https://doi.org/10.1007/s11709-015-0289-7
  • Abusharar, S. W., Zheng, J. J., & Chen, B. G. (2009). Finite element modeling of the consolidation behavior of multi-column supported road embankment. Computers and Geotechnics, 36(4), 676–685. https://doi.org/10.1016/j.compgeo.2008.09.006
  • Ali, H., Sarmad, A., & Wisam, S. (2016). Analysis of laterally loaded 2 × 2 square pile groups using finite element method. In 6th International Conference On Advances in Civil and Structural Engineering – CSE’16, December, 2017 (pp. 7–12). https://doi.org/10.15224/978-1-63248-110-8-27
  • Bao, X., Wu, S., Liu, Z., Su, D., & Chen, X. (2022). Study on the nonlinear behavior of soil–pile interaction in liquefiable soil using 3D numerical method. Ocean Engineering, 258(July), 111807. https://doi.org/10.1016/j.oceaneng.2022.111807
  • Baqi, Y., Khan, J. A., Ahmad, S., & Sadique, M. R. (2022). Numerical analysis of hollow steel pile subjected to a combination of horizontal and vertical loads. Materials Today: Proceedings, 65, 609–614. https://doi.org/10.1016/j.matpr.2022.03.195
  • Chen, Y., Deng, A., Lu, F., & Sun, H. (2020). Failure mechanism and bearing capacity of vertically loaded pile with partially-screwed shaft: Experiment and simulations. Computers and Geotechnics, 118, 103337. https://doi.org/10.1016/j.compgeo.2019.103337
  • Chen, Y., Deng, A., Wang, A., & Sun, H. (2018). Performance of screw–shaft pile in sand: Model test and DEM simulation. Computers and Geotechnics, 104, 118–130. https://doi.org/10.1016/j.compgeo.2018.08.013
  • Chen, Y., Lv, Y., Wu, K., & Huang, X. (2022). Numerical analysis of bridge piers under earthquakes considering pile–soil interactions and water–pier interactions. Ocean Engineering, 266(P4), 113023. https://doi.org/10.1016/j.oceaneng.2022.113023
  • Chiou, J. S., & Wei, W. T. (2021). Numerical investigation of pile-head load effects on the negative skin friction development of a single pile in consolidating ground. Acta Geotechnica, 16(6), 1867–1878. https://doi.org/10.1007/s11440-020-01134-0
  • Choi, Y., Kim, D.-C., Kim, S.-S., Nam, M. S., & Kim, T.-H. (2013). Implementation of noise-free and vibration-free PHC screw piles on the basis of full-scale tests. Journal of Construction Engineering and Management, 139(8), 960–967. https://doi.org/10.1061/(asce)co.1943-7862.0000667
  • Choo, J. (2018). Mohr–Coulomb plasticity for sands incorporating density effects without parameter calibration. International Journal for Numerical and Analytical Methods in Geomechanics, 42(18), 2193–2206. https://doi.org/10.1002/nag.2851
  • Da Silva, B. O., Tsuha, C. D. H. C., & Dos Santos Filho, J. M. S. M. (2023). A database of installation monitoring and uplift load tests of round-shaft helical anchors in Brazil. Probabilistic Engineering Mechanics, 71, 103378. https://doi.org/10.1016/j.probengmech.2022.103378
  • Dehestani, M., & Mousavi, S. S. (2015). Modified steel bar model incorporating bond-slip effects for embedded element method. Construction and Building Materials, 81, 284–290. https://doi.org/10.1016/j.conbuildmat.2015.02.027
  • George, B. E., Banerjee, S., & Gandhi, S. R. (2020). Numerical analysis of helical piles in cohesionless soil. International Journal of Geotechnical Engineering, 14(4), 361–375. https://doi.org/10.1080/19386362.2017.1419912
  • Geotechnica, S., & Do, K. (2016). The Non-Linear Mohr – Coulomb Model for Sands. January 2006.
  • Hassan, S. A., Al-Soud, M. S., & Mohammed, S. A. (2019). Behavior of pyramidal shell foundations on reinforced sandy soil. Geotechnical and Geological Engineering, 37(4), 2437–2452. https://doi.org/10.1007/s10706-018-00767-z
  • IS 2386-Part III (1963). Method of test for aggregate for concrete. Part III-Specific gravity, density, voids, absorption and bulking. Bureau of Indian Standards, New Delhi (Reaffirmed 2002).
  • IS 2720: Part 13 (1986). Methods of test for soils, Part 13: Direct shear test. Bureau of Indian Standards, New Delhi, India. Reaffirmed (2002), 1–12.
  • IS 2720: Part 14 (1983). Methods of test for soils: determination of density index (relative density) of cohesionless soils. Bureau of Indian Standards, New Delhi, India. Reaffirmed (2006), 1–14.
  • IS 2720: Part 4 (1985). Indian standard, methods of test for soils, Part 4: Grain size analysis. Bureau of Indian Standards, New Delhi, India. Reaffirmed (2006), 1–38.
  • IS 2911 (Part 4) (2013). Design and construction of pile foundations – Code of practice part 4 load test on piles. Bureau of Indian Standards, 2911 (December).
  • IS:2911 (Part 1/Section 2) (2010). Design and construction of pile foundations – Code of practice. 2911(Part 4), 2911.
  • Jawad, S., & Han, J. (2021). Numerical analysis of laterally loaded single free-headed piles within mechanically stabilized earth walls. International Journal of Geomechanics, 21(5), 1–14. https://doi.org/10.1061/(asce)gm.1943-5622.0001989
  • Khodair, Y., & Abdel-Mohti, A. (2014). Numerical analysis of pile–soil interaction under axial and lateral loads. International Journal of Concrete Structures and Materials, 8(3), 239–249. https://doi.org/10.1007/s40069-014-0075-2
  • Li, L., Liu, X., Liu, H., Wu, W., Lehane, B. M., Jiang, G., & Xu, M. (2022). Experimental and numerical study on the static lateral performance of monopile and hybrid pile foundation. Ocean Engineering, 255, 111461. https://doi.org/10.1016/j.oceaneng.2022.111461
  • Liu, P., Liu, C., Zhang, S., Wang, Y., & Wang, Q. (2022). Depth-varying corrosion characteristics and stability bearing capacity of steel pipe piles under aggressive marine environment. Ocean Engineering, 266(P1), 112649. https://doi.org/10.1016/j.oceaneng.2022.112649
  • Lu, J., Guang, H., Cui, L., Liu, J., Wang, C., & Kumar, S. A. (2023). Experimental study on penetration characteristics of an open-ended pile under static and dynamic driving methods. Soil Dynamics and Earthquake Engineering, 166, 107770. https://doi.org/10.1016/j.soildyn.2023.107770
  • Mardfekri, M., Gardoni, P., & Roesset, J. M. (2013). Modeling laterally loaded single piles accounting for nonlinear soil-pile interactions. Journal of Engineering, 2013, 1–7. https://doi.org/10.1155/2013/243179
  • Mittal, S., Ganjoo, B., & Shekhar, S. (2010). Static equilibrium of screw anchor pile under lateral load in sands. Geotechnical and Geological Engineering, 28(5), 717–725. https://doi.org/10.1007/s10706-010-9342-4
  • Nowkandeh, M. J., & Choobbasti, A. J. (2021). Numerical study of single helical piles and helical pile groups under compressive loading in cohesive and cohesionless soils. Bulletin of Engineering Geology and the Environment, 80(5), 4001–4023. https://doi.org/10.1007/s10064-021-02158-w
  • Ooi, P. S. K., Chang, B. K. F., & Wang, S. (2004). And pile groups. ASCE, 130, 1140–1151. https://doi.org/10.1061/(ASCE)1090-0241(2004)130
  • Poulos, H. G. (2018). Pile load testing. Tall building foundation design (pp. 389–416). CRC Press. https://doi.org/10.1201/9781315156071-13
  • Rao, N., & Prasad, Y. v s n (1993). Estimation of uplift capacity of helical anchors in clays. Journal of Geotechnical Engineering, 119(2), 352–357. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:2(352)
  • Saha, R., Dutta, S. C., Haldar, S., & Kumar, S. (2020). Effect of soil-pile raft-structure interaction on elastic and inelastic seismic behaviour. Structures, 26, 378–395. https://doi.org/10.1016/j.istruc.2020.04.022
  • Shen, W., Pang, Q., Fan, L., Li, P., & Zhao, X. (2023). Monitoring and quantification of non-uniform corrosion induced mass loss of steel piles with distributed optical fiber sensors. Automation in Construction, 148, 104769. https://doi.org/10.1016/j.autcon.2023.104769
  • Soltani-Jigheh, H., & Zahedi, P. (2020). Load transfer mechanism of screw piles in sandy soils. Indian Geotechnical Journal, 50(6), 871–879. https://doi.org/10.1007/s40098-020-00431-5
  • Srijaroen, C., Hoy, M., Horpibulsuk, S., Rachan, R., & Arulrajah, A. (2021). Soil–cement screw pile: Alternative pile for low- and medium-rise buildings in soft Bangkok clay. Journal of Construction Engineering and Management, 147(2), 04020173. https://doi.org/10.1061/(asce)co.1943-7862.0001988
  • Taborda, D. M. G., Pedro, A. M. G., & Pirrone, A. I. (2022). A state parameter-dependent constitutive model for sands based on the Mohr-Coulomb failure criterion. Computers and Geotechnics, 148, 104811. https://doi.org/10.1016/j.compgeo.2022.104811
  • Venkatesan, V., & Mayakrishnan, M. (2022). Behavior of mono helical pile foundation in clays under combined uplift and lateral loading conditions. Applied Sciences, 12(14), 6827. https://doi.org/10.3390/app12146827
  • Vignesh, V., & Muthukumar, M. (2023). Experimental and numerical study of group effect on the behavior of helical piles in soft clays under uplift and lateral loading. Ocean Engineering, 268, 113500. https://doi.org/10.1016/j.oceaneng.2022.113500
  • Yang, Y., Ouyang, W., Liu, K., & Liu, S. W. (2022). Efficient numerical algorithms for assessing the mechanical performance of corroded offshore steel sheet piles. Ocean Engineering, 266(P2), 112776. https://doi.org/10.1016/j.oceaneng.2022.112776
  • Zarrabi, M., & Eslami, A. (2016). Behavior of piles under different installation effects by physical modeling. International Journal of Geomechanics, 16(5), 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0000643
  • Zhang, Q., & Zhuo, W. (2014). Numerical analysis of the mechanical properties of batter piles under inclined loads. Journal of Highway and Transportation Research and Development, 8(2), 66–71. https://doi.org/10.1061/JHTRCQ.0000383
  • Zheng, G., Wang, R., Lei, H., Zhang, T., & Fan, Q. (2023). Load-transfer-associated settlements of a piled building during shield tunnelling in soft ground. Tunnelling and Underground Space Technology, 133, 104964. https://doi.org/10.1016/j.tust.2022.104964
  • Zhou, S., Zhou, M., Tian, Y., & Zhang, X. (2023). Effects of strain rate and strain softening on the installation of helical pile in soft clay. Ocean Engineering, 285(P1), 115370. https://doi.org/10.1016/j.oceaneng.2023.115370