181
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Solar energy-assisted CCHP cycles for dairy applications in rural sector with effect assessment of reheating on novel CO2 working fluid

ORCID Icon, ORCID Icon, , &
Article: 2327568 | Received 22 Nov 2023, Accepted 03 Mar 2024, Published online: 01 May 2024

References

  • Akram, W., Parvez, M., & Khan, O. (2023). Parametric analysis of solar-assisted trigeneration system based on energy and exergy analyses. Journal of Thermal Engineering, 9(3), 764–775. https://doi.org/10.18186/thermal.1300538
  • Al Moussawi, H., Fardoun, F., & Louahlia-Gualous, H. (2016). Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Conversion and Management, 120, 157–196. https://doi.org/10.1016/j.enconman.2016.04.085
  • Alirahmi, S. M., Rahmani Dabbagh, S., Ahmadi, P., & Wongwises, S. (2020). Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy. Energy Conversion and Management, 205, 112426. https://doi.org/10.1016/j.enconman.2019.112426
  • Almatrafi, E., Khaliq, A., Kumar, R., Bamasag, A., & Siddiqui, M. E. (2023). Proposal and investigation of a new tower solar collector-based trigeneration energy system. Sustainability, 15(9), 7474. https://doi.org/10.3390/su15097474
  • Alshuraiaan, B. (2023). Improving the efficiency of solar-driven trigeneration systems using nanofluid coolants. Case Studies in Thermal Engineering, 50, 103459. https://doi.org/10.1016/j.csite.2023.103459
  • Al-Sulaiman, F. A., Dincer, I., & Hamdullahpur, F. (2011). Exergy modeling of a new solar driven trigeneration system. Solar Energy, 85(9), 2228–2243. https://doi.org/10.1016/j.solener.2011.06.009
  • Bellos, E., & Tzivanidis, C. (2021). Dynamic investigation and optimization of a solar-fed trigeneration system. Applied Thermal Engineering, 191, 116869. https://doi.org/10.1016/j.applthermaleng.2021.116869
  • Boyaghchi, F. A., & Heidarnejad, P. (2015). Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application. Energy Conversion and Management, 97, 224–234. https://doi.org/10.1016/j.enconman.2015.03.036
  • Cao, Y., Dhahad, H. A., Sharma, K., ABo-Khalil, A. G., El-Shafay, A. S., & Ibrahim, B. F. (2022). Comparative thermoeconomic and thermodynamic analyses and optimization of an innovative solar-driven trigeneration system with carbon dioxide and nitrous oxide working fluids. Journal of Building Engineering, 45, 103486. https://doi.org/10.1016/j.jobe.2021.103486
  • Cao, Y., Dhahad, H. A., Sharma, K., Anqi, A. E., El-Shafay, A. S., & Ahmed, A. N. (2022). Comprehensive thermodynamic and economic analyses and optimization of a novel poly-generation setup utilizing solar and geothermal sources. Applied Thermal Engineering, 207, 118133. https://doi.org/10.1016/j.applthermaleng.2022.118133
  • Chen, Y., & Lundqvist, P. G. (2006, May 29–31). Carbon dioxide cooling and power combined cycle for mobile applications [Paper presentation]. 7th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Trondheim, Norway.
  • Cho, H., Smith, A. D., & Mago, P. (2014). Combined cooling, heating and power: A review of performance improvement and optimization. Applied Energy, 136, 168–185. https://doi.org/10.1016/j.apenergy.2014.08.107
  • Dabwan, Y. N., & Pei, G. (2020). A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis. Renewable Energy, 152, 925–941. https://doi.org/10.1016/j.renene.2020.01.088
  • Dabwan, Y. N., Pei, G., Gao, G., Feng, J., & Li, J. (2020). A novel integrated solar tri-generation system for cooling, freshwater and electricity production purpose: Energy, economic and environmental performance analysis. Solar Energy, 198, 139–150. https://doi.org/10.1016/j.solener.2020.01.043
  • Dostal, V., Driscoll, M. J., & Hejzlar, P. (2004). [A supercritical carbon dioxide cycle for next generation nuclear reactors] [Doctoral dissertation]. Massachusetts Institute of Technology, Department of Nuclear Engineering).
  • García-Domínguez, J., Blanco-Marigorta, A. M., & Marcos, J. D. (2023). Analysis of a solar driven orc-absorption based cchp system from a novel exergy approach. Energy Conversion and Management: X, 19, 100402. https://doi.org/10.1016/j.ecmx.2023.100402
  • Huicochea, A., Rivera, W., Gutiérrez-Urueta, G., Bruno, J. C., & Coronas, A. (2011). Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller. Applied Thermal Engineering, 31(16), 3347–3353. https://doi.org/10.1016/j.applthermaleng.2011.06.016
  • Jradi, M., & Riffat, S. (2014). Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies. Renewable and Sustainable Energy Reviews, 32, 396–415. https://doi.org/10.1016/j.rser.2014.01.039
  • Kasaeian, A., Bellos, E., Shamaeizadeh, A., & Tzivanidis, C. (2020). Solar-driven polygeneration systems: Recent progress and outlook. Applied Energy, 264, 114764. https://doi.org/10.1016/j.apenergy.2020.114764
  • Khalid, F., & Kumar, R. (2022). Development and assessment of a new solar-based trigeneration system using hydrogen for vehicular application in a self-sustained community. International Journal of Hydrogen Energy, 47(62), 26082–26090. https://doi.org/10.1016/j.ijhydene.2022.04.008
  • Li, Z., Chen, H., Xu, Y., & Ooi, K. T. (2020). Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors. Energy Conversion and Management, 215, 112895. https://doi.org/10.1016/j.enconman.2020.112895
  • Milk Facts. (2015). Heat Treatments and Pasteurization, Public Health Reports, September-October, vol 129, Pages 455–457.
  • Mohammadi, K., & Powell, K. (2020). Thermodynamic and economic analysis of different cogeneration and trigeneration systems based on carbon dioxide vapor compression refrigeration systems. Applied Thermal Engineering, 164, 114503. https://doi.org/10.1016/j.applthermaleng.2019.114503
  • Mohsenipour, M., Ebadollahi, M., Rostamzadeh, H., & Amidpour, M. (2020). Design and evaluation of a solar-based trigeneration system for a nearly zero energy greenhouse in arid region. Journal of Cleaner Production, 254, 119990. https://doi.org/10.1016/j.jclepro.2020.119990
  • Palmero-Marrero, A. I., & Oliveira, A. C. (2011). Performance simulation of a solar-assisted micro-tri-generation system: Hotel case study. International Journal of Low-Carbon Technologies, 6(4), 309–317. https://doi.org/10.1093/ijlct/ctr028
  • Parvez, M., Lal, S., Khan, O., Howari, H., & Siddiqui, S. A. (2023). An assessment of solar driven combined cooling, heating, and electric power generation system: Using energy, exergy, and CO2 mitigation approach. Journal of Modern Green Energy, 2(5), 1/13–13/13. https://doi.org/10.53964/jmge.2023005
  • Ravindra, V., & Ramgopal, M. (2019). Studies on a solar assisted, CO2 based trigeneration system for milk processing: Performance comparison between throttle valve and ejector expansion valve. Journal of Clean Energy Technologies, 7(2), 19–24. https://doi.org/10.18178/JOCET.2019.7.2.504
  • Ravindra, V., & Ramgopal, M. (2018). Thermodynamic analysis of a solar assisted combined cooling, heating and power system with different cooling cycle configurations. INAE Letters, 3(2), 107–113. https://doi.org/10.1007/s41403-018-0039-y
  • Robinson, D. M., & Groll, E. A. (1998). Efficiencies of transcritical CO2 cycles with and without an expansion turbine: Rendement de cycles transcritiques au CO2 avec et sans turbine d‘expansion. International Journal of Refrigeration, 21(7), 577–589. https://doi.org/10.1016/S0140-7007(98)00024-3
  • Saini, P., Singh, J., & Sarkar, J. (2020a). Proposal and performance comparison of various solar-driven novel combined cooling, heating and power system topologies. Energy Conversion and Management, 205, 112342. https://doi.org/10.1016/j.enconman.2019.112342
  • Saini, P., Singh, J., & Sarkar, J. (2020b). Thermodynamic, economic and environmental analyses of a novel solar energy driven small-scale combined cooling, heating and power system. Energy Conversion and Management, 226, 113542. https://doi.org/10.1016/j.enconman.2020.113542
  • Sarkar, J., & Bhattacharyya, S. (2009). Optimization of recompression S-CO2 power cycle with reheating. Energy Conversion and Management, 50(8), 1939–1945. https://doi.org/10.1016/j.enconman.2009.04.015
  • Sarkar, J., Bhattacharyya, S., & Gopal, M. R. (2004). Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 27(8), 830–838. https://doi.org/10.1016/j.ijrefrig.2004.03.006
  • Tora, E. A., & El-Halwagi, M. M. (2011). Integrated conceptual design of solar-assisted trigeneration systems. Computers & Chemical Engineering, 35(9), 1807–1814. https://doi.org/10.1016/j.compchemeng.2011.03.014
  • Tsimpoukis, D., Syngounas, E., Bellos, E., Koukou, M., Tzivanidis, C., Anagnostatos, S., & Vrachopoulos, M. G. (2021). Investigation of energy and financial performance of a novel CO2 supercritical solar-biomass trigeneration system for operation in the climate of Athens. Energy Conversion and Management, 245, 114583. https://doi.org/10.1016/j.enconman.2021.114583
  • Vutukuru, R., & Ramgopal, M. (2021). Parametric estimation of wall temperature in a parabolic trough solar collector using supercritical CO2 as heat transfer fluid for process heat production. Advances in air conditioning and refrigeration: Select proceedings of RAAR 2019 (pp. 277–284). Springer.
  • Vutukuru, R., Pegallapati, A. S., & Maddali, R. (2019). Suitability of various heat transfer fluids for high temperature solar thermal systems. Applied Thermal Engineering, 159, 113973. https://doi.org/10.1016/j.applthermaleng.2019.113973
  • Vutukuru, R., Pegallapati, A. S., & Maddali, R. (2019). Thermodynamic studies on a solar assisted transcritical CO2 based tri-generation system with an ejector for dairy applications. International Journal of Refrigeration, 108, 113–123. https://doi.org/10.1016/j.ijrefrig.2019.08.031
  • Wang, J., Dai, Y., Gao, L., & Ma, S. (2009). A new combined cooling, heating and power system driven by solar energy. Renewable Energy, 34(12), 2780–2788. https://doi.org/10.1016/j.renene.2009.06.010
  • Wang, J., Zhao, P., Niu, X., & Dai, Y. (2012). Parametric analysis of a new combined cooling, heating and power system with transcritical CO2 driven by solar energy. Applied Energy, 94, 58–64. https://doi.org/10.1016/j.apenergy.2012.01.007
  • Wu, H., Liu, Q., Bai, Z., Xie, G., Zheng, J., & Su, B. (2020). Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Applied Thermal Engineering, 164, 114494. https://doi.org/10.1016/j.applthermaleng.2019.114494
  • Xu, J., Sui, J., Li, B., & Yang, M. (2010). Research, development and the prospect of combined cooling, heating, and power systems. Energy, 35(11), 4361–4367. https://doi.org/10.1016/j.energy.2009.03.019
  • Yefeng, L., Groll, E. A., Kurtulus, O., & Yazawa, K. (2014). Study on energy-saving performance of a novel CO2 heat pump with applications in dairy processes. In International Refrigeration and Air Conditioning Conference, Purdue, p. 1557.
  • Zarei, A., Akhavan, S., Ghodrat, M., & Behnia, M. (2022). Thermodynamic analysis and multi-objective optimization of a modified solar trigeneration system for cooling, heating and power using photovoltaic-thermal and flat plate collectors. International Communications in Heat and Mass Transfer, 137, 106261. https://doi.org/10.1016/j.icheatmasstransfer.2022.106261
  • Zhai, H., Dai, Y. J., Wu, J. Y., & Wang, R. Z. (2009). Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Applied Energy, 86(9), 1395–1404. https://doi.org/10.1016/j.apenergy.2008.11.020