138
Views
0
CrossRef citations to date
0
Altmetric
Mechanical engineering

Analysis of brush-molten metal interaction in brush atomizers: a CFD approach

ORCID Icon, &
Article: 2327572 | Received 19 Dec 2023, Accepted 03 Mar 2024, Published online: 20 Mar 2024

References

  • Alibek, I., Yeldos, Z., & Aida, N. (2018). Numerical simulation of dam break flow for various forms of the obstacle by VOF method. International Journal of Multiphase Flow, 109, 191–206. https://doi.org/10.1016/j.ijmultiphaseflow.2018.08.003
  • ANSYS Inc. (2009). ANSYS FLUENT 12.0 UDF manual. ANSYS Inc.
  • Avijit, K., & Sumanta, A. (2021). Numerical simulation of falling film flow hydrodynamics over round horizontal tubes. International Journal of Heat and Mass Transfer, 173, 121175.
  • Eureka.im. (2020). FLUENT 6 - UDF to count the number of droplets in a VOF simulation. https://www.eureka.im/1249.html.
  • Gao, D., Morley, N. B., & Dhir, V. (2003). Numerical simulation of wavy falling film flow using VOF method. Journal of Computational Physics, 192(2), 624–642. https://doi.org/10.1016/j.jcp.2003.07.013
  • Ghiji, M., Goldsworthy, L., Garaniya, V., Brandner, P. A., & Hield, P. (2014). CFD modeling of primary atomization of diesel spray [Paper presentation]. 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, 8–11 December.
  • Gibbons, D. W., Govender, P., & van der Merwe, A. F. (2023). Metal powder feedstock evaluation and management for powder bed fusion: a review of literature, standards, and practical guidelines. Progress in Additive Manufacturing. https://doi.org/10.1007/s40964-023-00484-x
  • Heng Yeoh, G., & Barber, T. (2009). Assessment of interface capturing methods in computational fluid dynamics (CFD) codes-A case study. The Journal of Computational Multiphase Flows, 1(2), 201–215. https://doi.org/10.1260/175748209789563946
  • Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5
  • Kassym, K., & Perveen, A. (2020). Atomization processes of metal powders for 3D printing. Materials Today: Proceedings, 26(2), 1727–1733. https://doi.org/10.1016/j.matpr.2020.02.364
  • Katopodes, N. D. (2019). Chapter 12 – Volume of fluid method. In N. D. Katopodes (Ed.), Free-surface flow (pp. 766–802). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-815485-4.00018-8
  • Kayali, Y. E., & Unal, R. (2018). Determination of metal powder particle size by numerical modeling in gas atomization. Journal of Faculty of Engineering and Architecture of Gazi University, 33(3), 1135–1144.
  • Ketabdari, M. J. (2016). Free surface flow simulation using VOF method. In Numerical simulation – From brain imaging to turbulent flows. InTech.
  • Li, X., & Fritsching, U. (2017). Process modeling pressure-swirl-gas-atomization for metal powder production. Journal of Materials Processing Technology, 239, 1–17. https://doi.org/10.1016/j.jmatprotec.2016.08.009
  • Lorstad, D., & Fuchs, L. (2001). A volume of fluid (VOF) method for handling solid objects using fixed Cartesian grids. Transactions on Modeling and Simulation, 29, 143–152.
  • Mafoud, M. (1992). The wettability of ceramic-coated steel substrates by liquid metals [M.Eng. thesis]. Faculty of Graduate Studies, Mining and Metallurgical Engineering, McGill University.
  • Malgarinos, I., Nikolopoulos, N., Marengo, M., Antonini, C., & Gavaises, M. (2014). VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model. Advances in Colloid and Interface Science, 212, 1–20. https://doi.org/10.1016/j.cis.2014.07.004
  • Motaman, S. (2013). High-speed imaging and computational modeling of close-coupled gas atomization [Ph.D. thesis]. Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds.
  • Ningegowda, B. M., & Premachandran, B. (2014). A coupled level set and volume of fluid method with multi-directional advection algorithms for two-phase flows with and without phase change. International Journal of Heat and Mass Transfer, 79, 532–550. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.039
  • Onwuka, O. S., Unachukwu, G. O., & Nwanya, S. C. (2021). Design and development of a brush atomization machine for metal powder production. Scientific African, 14, e00986. https://doi.org/10.1016/j.sciaf.2021.e00986
  • Pan, Y., Witt, P. J., Kuan, B., & Xie, D. (2014). CFD Modeling of the Effects of Operating Parameters on the Spreading of Liquids on a Spinning Disc. The Journal of Computational Multiphase Flows, 6(1), 49–64. https://doi.org/10.1260/1757-482X.6.1.49
  • Paz, C., Suárez, E., Vence, J., & Cabarcos, A. (2019). Analysis of the volume of fluid (VOF) method for the simulation of the mucus clearance process with CFD. Computer Methods in Biomechanics and Biomedical Engineering, 22(5), 547–566. https://doi.org/10.1080/10255842.2019.1569637
  • Phairote, P., Plookphol, T., & Wisutmethangoon, S. (2012). Design and development of a centrifugal atomizer for producing zinc metal powder. International Journal of Applied Physics and Mathematics, 2(2), 77–82. https://doi.org/10.7763/IJAPM.2012.V2.58
  • Roshdi, S., Kasiri, N., & Rahbar-Kelishami, A. (2018). VOF simulation of single rising drops in three liquid-liquid extraction systems using CSF and CSS interfacial force models. Brazilian Journal of Chemical Engineering, 35(4), 1315–1331. https://doi.org/10.1590/0104-6632.20180354s20170609
  • Sarkar, S., Sivaprasad, P. V., & Bakshi, S. (2016). Numerical modeling and prediction of particle size distribution during gas atomization molten tin. Atomization and Sprays, 26(1), 23–51. https://doi.org/10.1615/AtomizSpr.2015011680
  • Sungkhaphaitoon, P., Wisutmethangoon, S., & Plookphol, T. (2017). Influence of process parameters on zinc powder produced by centrifugal atomization. Materials Research, 20(3), 718–724. https://doi.org/10.1590/1980-5373-mr-2015-0674
  • Whiting, J. G., Tondare, V. N., Scott, J. H. J., Phan, T. Q., & Donmez, M. A. (2019). Uncertainty of particle size measurements using dynamic image analysis. CIRP Annals, 68(1), 531–534. https://doi.org/10.1016/j.cirp.2019.04.075
  • Wu, C., Asgarian, A., Chatterjee, S., & Paserin, V. (2017). Understanding water jet and metal stream interactions during water atomization of steel powders using analytical and CFD modeling techniques [Paper presentation]. International Conference on Powder Metallurgy and Particulate Materials (POWDERMET), Las Vegas, USA, June 13–16.
  • Xie, J. W., Zhao, Y. Y., & Dunkley, J. J. (2004). Effects of processing conditions on powder particle size and morphology in centrifugal atomization of tin. Powder Metallurgy. 47(2), 168–172. https://doi.org/10.1179/003258904225015482
  • Zeoli, N., Gu, S., & Kamnis, S. (2008). Numerical modeling of metal droplet cooling and solidification. International Journal of Heat and Mass Transfer, 51(15–16), 4121–4131. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.044
  • Zeoli, N., Tabbara, H., & Gu, S. (2011). CFD modeling of primary break up during metal powder atomization. Chemical Engineering Science, 66(24), 6498–6504. https://doi.org/10.1016/j.ces.2011.09.014
  • Zhao, Y. Y. (2006). Considerations in designing a centrifugal atomizer for metal powder production. Materials & Design, 27(9), 745–750. https://doi.org/10.1016/j.matdes.2005.01.011