210
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Evaluation of water flow in cotton yarn and fabric assemblies for capillary evaporative cooling

, &
Article: 2328825 | Received 05 Dec 2023, Accepted 05 Mar 2024, Published online: 03 Apr 2024

References

  • Abate, M. T. (2017). Combined pre-treatment and causticization of cotton fabric for improved dye uptake. Advance Research in Textile Engineering, 2(1), 1–6. https://doi.org/10.26420/advrestexteng.2017.1016
  • Amanuel, L. (2022). Combined scouring-bleaching of cotton fabric from wild yam root. 0–6. https://doi.org/10.1177/15589250221085538
  • Asfand, N., & Basra, S. A. (2020). Analysis of textile capillarity evaluation methods : Literature review.
  • Azeem, M., Boughattas, A., Wiener, J., & Havelka, A. (2017). Mechanism of liquid water transport in fabrics; A review. Vlakna a Textil, 24(4), 58–65.
  • Beyhaghi, S., Geoffroy, S., Prat, M., & Pillai, K. M. (2014). Wicking and evaporation of liquids in porous wicks: A simple analytical approach to optimization of wick design. AIChE Journal, 60(5), 1930–1940. https://doi.org/10.1002/aic.14353
  • Chaomuang, N., Nuangjamnong, T., & Rakmae, S. (2023). Performance evaluation of a wet medium made of mangosteen peels for a direct evaporative cooling system. AgriEngineering, 5(4), 1865–1878. https://doi.org/10.3390/agriengineering5040114
  • Cho, J. Y., Hyung, M. C., & Cheol, J. H. (2015). Characterization of absorbent properties of fibers and fibrous assemblies using inclined wicking test. Fibers and Polymers, 16(4), 934–940. https://doi.org/10.1007/s12221-015-0934-8
  • Cui, X., Yan, W., Liu, Y., Zhao, M., & Jin, L. (2020). Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling. Applied Energy, 271(January), 115238. https://doi.org/10.1016/j.apenergy.2020.115238
  • Delele, M. A., Kuffi, K. D., Geeraerd, A., De Smet, S., Nicolai, B. M., & Verboven, P. (2019). Optimizing precooling of large beef carcasses using a comprehensive computational fluid dynamics model. Journal of Food Process Engineering, 42(4), 1–13. https://doi.org/10.1111/jfpe.13053
  • Doakhan, S., Branch, K., Abdolkarim, S., & Ravandi, H. (2016). Capillary rise in core-spun yarn. (June 2007).
  • Elmsaad, E., Emam, A., & Omran, A., (2023). Effect of utilization of different materials and thicknesses evaporative cooling pad on cooling efficiency in greenhouses in hot-arid regions. Egyptian Journal of Agronomy, 0(0), 0–0. https://doi.org/10.21608/agro.2023.220570.1380
  • Fischer, R., Schlepütz, C. M., Rossi, R. M., Derome, D., & Carmeliet, J. (2022). Journal of colloid and interface science wicking through complex interfaces at interlacing yarns. Journal of Colloid and Interface Science, 626, 416–425. https://doi.org/10.1016/j.jcis.2022.06.103
  • Harane, R. S., & Adivarekar, R. V. (2017). Sustainable processes for pre-treatment of cotton fabric. Textiles and Clothing Sustainability, 2(1), 1–9. https://doi.org/10.1186/s40689-016-0012-7
  • Jain, M., Daberao, A., & Gupta, K. K. (2021). Effect of process (desizing, scouring and bleaching) chemicals on the properties of the fabrics used (cotton and viscose) during pre-treatment. Journal of Fashion Technology & Textile Engineering, 9(3), 2–8. https://doi.org/10.13140/RG.2.2.15542.42562.
  • Kapilan, N., Isloor, A. M., & Karinka, S. (2023). Results in engineering review article a comprehensive review on evaporative cooling systems. Results in Engineering, 18 (March), 101059. https://doi.org/10.1016/j.rineng.2023.101059
  • Kumar, N., & Arakeri, J. H. (2020). Heat and mass transfer from a system of closely packed capillaries – possible choice for wicks. International Journal of Thermal Sciences, 148(November 2019), 106151. https://doi.org/10.1016/j.ijthermalsci.2019.106151
  • Laknizi, A., Ben Abdellah, A., Faqir, M., Essadiqi, E., & Dhimdi, S. (2021). Performance characterization of a direct evaporative cooling pad based on pottery material. International Journal of Sustainable Engineering, 14(1), 46–56. https://doi.org/10.1080/19397038.2019.1677800
  • Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., & Hu, Y. (2020). Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics. Polymers, 12(2), 422. https://doi.org/10.3390/polym12020422
  • Li, Y., Fan, J., Zhang, S., Xia, Z., Wang, L., & Liu, Y. (2023). Directional water transport in fabrics by varying yarn coordination and texture design. Fibers and Polymers, 24(2), 759–769. https://doi.org/10.1007/s12221-023-00092-0
  • Lv, J., Xu, H., Zhu, M., Dai, Y., Liu, H., & Li, Z. (2021). The performance and model of porous materials in the indirect evaporative cooling system: A review. Journal of Building Engineering, 41(May), 102741. https://doi.org/10.1016/j.jobe.2021.102741
  • Mallick, P., & De, S. S. (2021). Study the wicking phenomena of cotton woven fabrics and its constituent yarns: Relation between fabric wicking and yarn wicking study the wicking phenomena of cotton woven fabrics and its. Journal of Natural Fibers, 19(13), 5297–5309. https://doi.org/10.1080/15440478.2021.1875371
  • Mallick, P., & De, S. S. (2022). Absorbency and wicking behaviour of natural fibre-based yarn and fabric. Natural Fiber, 1–7. https://doi.org/10.5772/intechopen.102584
  • Mekonen, T. N., Delele, M. A., & Molla, S. W. (2023). Development and testing of solar powered evaporative air-cooling system with an improved performance development and testing of solar powered evaporative air-cooling system with an improved performance. Cogent Engineering, 10(1), 1–21. https://doi.org/10.1080/23311916.2023.2178115
  • Menezes, E., & Choudhari, M. (2011). Pre-treatment of textiles prior to dyeing. In Textile dyeing (pp. 1–22). In Tech Open Croatia. https://doi.org/10.5772/19051
  • Mirzajanzadeh, M., Deshpande, V. S., & Fleck, N. A. (2019). Water rise in a cellulose foam: By capillary or diffusional flow? Journal of the Mechanics and Physics of Solids, 124, 206–219. https://doi.org/10.1016/j.jmps.2018.10.009
  • Ogbuagu, N. (2019). Development of a passive evaporative cooling structure for development of a passive evaporative cooling structure for storage of fresh. https://doi.org/10.13140/RG.2.2.27085.38887
  • Rajan, P. T., Prakash, C., & Ramakrishnan, G. (2019). An effect of fabrics thickness and structure on moisture management properties of 3d spacer fabrics. International Journal of Clothing Science and Technology, 31(6), 777–789. https://doi.org/10.1108/IJCST-01-2019-0002
  • Said, S., Hamdaoui, M., & Sahraoui, W. (2023). Mathematical models to follow the dyeing of cotton knitted garment using the capillary rise technique. Fibers and Polymers, 24(1), 45–56. https://doi.org/10.1007/s12221-023-00041-x
  • Seweh, E. A., Darko, J. O., Addo, A., Asagadunga, P. A., & Achibase, S. (2016). Design, construction and evaluation of an evaporative cooler for sweet potatoes storage. Agricultural Engineering International: CIGR Journal, 18(2), 435–448.
  • Tarbuk, A., Flinčec Grgac, S., & Dekanić, T. (2019). Wetting and wicking of hospital protective textiles. Advanced Technologies, 8(2), 5–15. https://doi.org/10.5937/savteh1902005T
  • Tejero-González, A., & Franco-Salas, A. (2021). optimal operation of evaporative cooling pads: A review. Renewable and Sustainable Energy Reviews, 111632. 151(September). https://doi.org/10.1016/j.rser.2021.111632
  • Testoni, G. A., Kim, S., Pisupati, A., & Park, C. H. (2018). Modeling of the capillary wicking of flax fibers by considering the effects of fiber swelling and liquid absorption. Journal of Colloid and Interface Science, 525, 166–176. https://doi.org/10.1016/j.jcis.2018.04.064
  • Velasco-Gómez, E.., Tejero-González, A, Jorge-Rico, J., & Rey-Martínez, F. J. (2020). Experimental investigation of the potential of a new fabric-based evaporative cooling pad. Sustainability (Sustainability), 12(17), 7070. https://doi.org/10.3390/su12177070
  • Verploegen, E., Sanogo, O., and., & Chagomoka, T. (2019 Evaluation of low-cost evaporative cooling technologies for improved vegetable storage in mali [Paper presentation]. GHTC 2018 - IEEE Global Humanitarian Technology Conference, Proceedings, June. https://doi.org/10.1109/GHTC.2018.8601894
  • Wagaw, T., & Chavan, R. B. (2013). Causticization followed by combined desizing, scouring and bleaching of cotton fabric. Colourage, 60(3), 43–47.
  • Wagaw, T. (2022). Causticization followed by combined desizing, scouring and bleaching of cotton fabric.
  • Wang, F. (2018). Moisture absorption and transport through textiles (pp. 247–275). Woodhead Publishing.
  • Wang, Y., Qiao, Q., Gordon, S., Li, C., & Ning, F. (2022). Quantifying the effects of external factors on the behavior of vertical wicking in a warp stretch woven fabric. Journal of Engineered Fibers and Fabrics, 155892502211134. 17 https://doi.org/10.1177/15589250221113483
  • Wilkins, M., & Fumo, N., (2023). A review of models on direct evaporative cooling. American Journal of Undergraduate Research, 20(2), 45–55. https://doi.org/10.33697/ajur.2023.086
  • Xu, P., Ma, X., Zhao, X., & Fancey, K. S. (2016). Experimental investigation on performance of fabrics for indirect evaporative cooling applications. Building and Environment, 110, 104–114. https://doi.org/10.1016/j.buildenv.2016.10.003
  • Yang, Y., Cui, G., & Lan, C. Q. (2019). Developments in evaporative cooling and enhanced evaporative cooling - A review. Renewable and Sustainable Energy Reviews, 113(June 2016), 109230. https://doi.org/10.1016/j.rser.2019.06.037
  • Yeshiwas, Y., & Tadele, E. (2021). An investigation into major causes for postharvest losses of horticultural crops and their handling practice in Debre Markos, North-Western Ethiopia. Advances in Agriculture, 1–10. 2021 https://doi.org/10.1155/2021/1985303
  • Zarandi, M. A. F., & Pillai, K. M. (2018). Spontaneous imbibition of liquid in glass fiber wicks, part II: Validation of a diffuse-front model. AIChE Journal, 64(1), 306–315. https://doi.org/10.1002/aic.15856
  • Zhu, C. & Takatera, M. (2013). Effect of fabric structure and yarn on capillary liquid flow within fabrics. Journal of Fiber Bioengineering and Informatics, 6(2), 205–215. https://doi.org/10.3993/jfbi06201309
  • Zhu, C., & Takatera, M. (2014). A new thermocouple technique for the precise measurement of in-plane capillary water flow within fabrics. Textile Research Journal, 84(5), 513–526. https://doi.org/10.1177/0040517513503729
  • Zhu, G., Militky, J., Wang, Y., Vijay Sundarlal, B., & Kremenakova, D. (2015). Study on the wicking property of cotton fabric. Fibres and Textiles in Eastern Europe, 23(2), 137–140