456
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

Explainable artificial intelligence-driven gestational diabetes mellitus prediction using clinical and laboratory markers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Article: 2330266 | Received 17 Aug 2023, Accepted 08 Mar 2024, Published online: 26 Mar 2024

References

  • Alwash, S. M., McIntyre, H. D., & Mamun, A. (2021). The association of general obesity, central obesity and visceral body fat with the risk of gestational diabetes mellitus: Evidence from a systematic review and meta-analysis. Obesity Research & Clinical Practice, 15(5), 425–430. https://doi.org/10.1016/j.orcp.2021.07.005
  • Anguita, D., Ghelardoni, L., Ghio, A., Oneto, L., & Ridella, S. (2012, April 25–27). The ‘K’ in K-fold cross validation. In ESANN 2012 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium (pp. 441–446). i6doc Publishers.
  • Anguita, D., Ghio, a., Greco, N., Oneto, L., & Ridella, S. (2010, July 18–23). Model selection for support vector machines: Advantages and disadvantages of the machine learning theory. In 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain (pp. 1–8). IEEE. https://doi.org/10.1109/Ijcnn.2010.5596450
  • Bhat, S. S., Selvam, V., Ansari, G. A., & Ansari, M. D. (2022, November 25–27). Hybrid prediction model for type-2 diabetes mellitus using machine learning approach. In 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India (pp. 150–155). IEEE. https://doi.org/10.1109/PDGC56933.2022.10053092
  • Broløs, K. R., Machado, M. V., Cave, C., Kasak, J., Stentoft-Hansen, V., Batanero, V. G., Jelen, T., & Wilstrup, C. (2021). An approach to symbolic regression using Feyn [arXiv preprint arXiv:2104.05417]. https://doi.org/10.48550/arXiv.2104.05417
  • Butucea, C., Ndaoud, M., Stepanova, N. A., & Tsybakov, A. B. (2018). Variable selection with Hamming loss. Annals of Statistics, 46(5), 1837–1875.
  • Chadaga, K., Prabhu, S., Bhat, V., Sampathila, N., Umakanth, S., & Chadaga, R. (2023). A decision support system for diagnosis of COVID-19 from non-COVID-19 influenza-like illness using explainable artificial intelligence. Bioengineering, 10(4), 439. https://doi.org/10.3390/bioengineering10040439
  • Chan, Y. N., Wang, P., Chun, K. H., Lum, J. T. S., Wang, H., Zhang, Y., & Leung, K. S. Y. (2023). A machine learning approach for early prediction of gestational diabetes mellitus using elemental contents in fingernails. Scientific Reports, 13(1), 4184. https://doi.org/10.1038/s41598-023-31270-y
  • Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7
  • Damm, P., Houshmand-Oeregaard, A., Kelstrup, L., Lauenborg, J., Mathiesen, E. R., & Clausen, T. D. (2016). Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. Diabetologia, 59(7), 1396–1399. https://doi.org/10.1007/s00125-016-3985-5
  • de Oliveira, G. P., Fonseca, A., & Rodrigues, P. C. (2022). Diabetes diagnosis based on hard and soft voting classifiers combining statistical learning models. Brazilian Journal of Biometrics, 40(4), 415–427. https://doi.org/10.28951/bjb.v40i4.605
  • Du, Y., Rafferty, A. R., McAuliffe, F. M., Wei, L., & Mooney, C. (2022). An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus. Scientific Reports, 12(1), 1170. https://doi.org/10.1038/s41598-022-05112-2
  • Egan, A. M., Enninga, E. A. L., Alrahmani, L., Weaver, A. L., Sarras, M. P., & Ruano, R. (2021). Recurrent gestational diabetes mellitus: A narrative review and single-center experience. Journal of Clinical Medicine, 10(4), 569. https://doi.org/10.3390/jcm10040569
  • Ferreira, P., Le, D. C., & Zincir-Heywood, N. (2019, October 21–25). Exploring feature normalization and temporal information for machine learning based insider threat detection. In 2019 15th International Conference on Network and Service Management (CNSM), Halifax, NS, Canada (pp. 1–7). IEEE. https://doi.org/10.23919/CNSM46954.2019.9012708
  • Gnanadass, I. (2020). Prediction of gestational diabetes by machine learning algorithms. IEEE Potentials, 39(6), 32–37. https://doi.org/10.1109/MPOT.2020.3015190
  • Gong, L., Jiang, S., & Jiang, L. (2019). Tackling class imbalance problem in software defect prediction through cluster-based over-sampling with filtering. IEEE Access, 7, 145725–145737. https://doi.org/10.1109/ACCESS.2019.2945858
  • Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In D. S. Huang, X. P. Zhang, & G. B. Huang (Eds), Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science (Vol. 3644, pp. 878–887). Springer.
  • Jonathan, B., Putra, P. H., & Ruldeviyani, Y. (2020, July 7–8). Observation imbalanced data text to predict users selling products on female daily with SMOTE, Tomek, and SMOTE-Tomek. In 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia (pp. 81–85). IEEE. https://doi.org/10.1109/IAICT50021.2020.9172033
  • Junker, M., Hoch, R., & Dengel, A. (1999, September 22). On the evaluation of document analysis components by recall, precision, and accuracy. In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR'99 (Cat. No. PR00318), Bangalore, India (pp. 713–716). IEEE.
  • Kaggle. (2023). Visceral adipose tissue measurements during pregnancy. https://www.kaggle.com/datasets/kamyababedi/visceral-adipose
  • Kaur, P., Sharma, M., & Mittal, M. (2018). Big data and machine learning based secure healthcare framework. Procedia Computer Science, 132, 1049–1059. https://doi.org/10.1016/j.procs.2018.05.020
  • Kaushik, B., Sharma, R., Dhama, K., Chadha, A., & Sharma, S. (2023). Performance evaluation of learning models for intrusion detection system using feature selection. Journal of Computer Virology and Hacking Techniques, 19(4), 529–548. https://doi.org/10.1007/s11416-022-00460-z
  • Khanna, V. V., Chadaga, K., Sampathila, N., Chadaga, R., Prabhu, S., K S, S., Jagdale, A. S., & Bhat, D. (2023). A decision support system for osteoporosis risk prediction using machine learning and explainable artificial intelligence. Heliyon, 9(12), e22456. https://doi.org/10.1016/j.heliyon.2023.e22456
  • Khanna, V. V., Chadaga, K., Sampathila, N., Prabhu, S., & Chadaga, R. (2023). A machine learning and explainable artificial intelligence triage-prediction system for COVID-19. Decision Analytics Journal, 7, 100246. https://doi.org/10.1016/j.dajour.2023.100246
  • Koto, F. (2014, October 18–19). SMOTE-Out, SMOTE-Cosine, and selected-SMOTE: An enhancement strategy to handle imbalance in data level. In 2014 International Conference on Advanced Computer Science and Information System, Jakarta, Indonesia (pp. 280–284). IEEE.
  • Liu, B., Song, L., Zhang, L., Wang, L., Wu, M., Xu, S., Cao, Z., & Wang, Y. (2020). Higher numbers of pregnancies associated with an increased prevalence of gestational diabetes mellitus: Results from the Healthy Baby Cohort Study. Journal of Epidemiology, 30(5), 208–212. https://doi.org/10.2188/jea.JE20180245
  • Liu, H., Li, J., Leng, J., Wang, H., Liu, J., Li, W., Liu, H., Wang, S., Ma, J., Chan, J. C., Yu, Z., Hu, G., Li, C., & Yang, X. (2021). Machine learning risk score for prediction of gestational diabetes in early pregnancy in Tianjin, China. Diabetes/Metabolism Research and Reviews, 37(5), e3397. https://doi.org/10.1002/dmrr.3397
  • Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.) Advances in neural information processing systems (Vol. 30, pp. 4765–4774). Curran Associates.
  • McIntyre, H. D., Catalano, P., Zhang, C., Desoye, G., Mathiesen, E. R., & Damm, P. (2019). Gestational diabetes mellitus. Nature Reviews. Disease Primers, 5(1), 47. https://doi.org/10.1038/s41572-019-0098-8
  • Mennickent, D., Rodríguez, A., Farías-Jofré, M., Araya, J., & Guzmán-Gutiérrez, E. (2022). Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review. Artificial Intelligence in Medicine, 132, 102378. https://doi.org/10.1016/j.artmed.2022.102378
  • Muntasir Nishat, M., Faisal, F., Jahan Ratul, I., Al-Monsur, A., Ar-Rafi, A. M., Nasrullah, S. M., Reza, M. T., & Khan, M. R. H. (2022). A comprehensive investigation of the performances of different machine learning classifiers with SMOTE-ENN oversampling technique and hyperparameter optimization for imbalanced heart failure dataset. Scientific Programming, 2022, 1–17. https://doi.org/10.1155/2022/3649406
  • Nasarian, E., Abdar, M., Fahami, M. A., Alizadehsani, R., Hussain, S., Basiri, M. E., Zomorodi-Moghadam, M., Zhou, X., Pławiak, P., Acharya, U. R., Tan, R.-S., & Sarrafzadegan, N. (2020). Association between work-related features and coronary artery disease: A heterogeneous hybrid feature selection integrated with balancing approach. Pattern Recognition Letters, 133, 33–40. https://doi.org/10.1016/j.patrec.2020.02.010
  • No, A. (2019). Universality of logarithmic loss in fixed-length lossy compression. Entropy, 21(6), 580. https://doi.org/10.3390/e21060580
  • Peng, C., & Cheng, Q. (2020). Discriminative ridge machine: A classifier for high-dimensional data or imbalanced data. IEEE Transactions on Neural Networks and Learning Systems, 32(6), 2595–2609. https://doi.org/10.1109/TNNLS.2020.3006877
  • Perna, R., Loughan, A. R., Le, J., & Tyson, K. (2015). Gestational diabetes: Long-term central nervous system developmental and cognitive sequelae. Applied Neuropsychology. Child, 4(3), 217–220. https://doi.org/10.1080/21622965.2013.874951
  • Ranjan, G. S. K., Verma, A. K., & Radhika, S. (2019, March 29–31). K-nearest neighbors and grid search cv based real time fault monitoring system for industries. In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India (pp. 1–5). IEEE. https://doi.org/10.1109/I2CT45611.2019.9033691
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any classifier. In B. Krishnapuram & M. Shah (Eds.), KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). Association for Computing Machinery.
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v32i1.11491
  • Rodrigues, T., & Bernardes, G. J. (2020). Machine learning for target discovery in drug development. Current Opinion in Chemical Biology, 56, 16–22. https://doi.org/10.1016/j.cbpa.2019.10.003
  • Santosh, K. C., & Gaur, L. (2021). Introduction to AI in public health. In K. C. Santosh & L. Gaur (Eds.), Artificial intelligence and machine learning in public healthcare: Opportunities and societal impact (pp. 1–10). Springer.
  • Sesmilo, G., Prats, P., Garcia, S., Rodríguez, I., Rodríguez-Melcón, A., Berges, I., & Serra, B. (2020). First-trimester fasting glycemia as a predictor of gestational diabetes (GDM) and adverse pregnancy outcomes. Acta Diabetologica, 57(6), 697–703. https://doi.org/10.1007/s00592-019-01474-8
  • Shaat, N., & Groop, L. (2007). Genetics of gestational diabetes mellitus. Current Medicinal Chemistry, 14(5), 569–583. https://doi.org/10.2174/092986707780059643
  • Shafi, S., & Ansari, G. A. (2021, April 29–30). Early prediction of diabetes disease & classification of algorithms using machine learning approach [Paper presentation]. Proceedings of the International Conference on Smart Data Intelligence (ICSMDI 2021), Trichy, Tamil Nadu, India.
  • Thekadayil, A. J. (2018). Product bundle recommendation using collaboration of matrix factorization and Jaccard similarity [Doctoral dissertation]. National College of Ireland.
  • Wu, Y.-T., Zhang, C.-J., Mol, B. W., Kawai, A., Li, C., Chen, L., Wang, Y., Sheng, J.-Z., Fan, J.-X., Shi, Y., & Huang, H.-F. (2021). Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning. The Journal of Clinical Endocrinology and Metabolism, 106(3), e1191–e1205. https://doi.org/10.1210/clinem/dgaa899
  • Xiong, Y., Lin, L., Chen, Y., Salerno, S., Li, Y., Zeng, X., & Li, H. (2022). Prediction of gestational diabetes mellitus in the first 19 weeks of pregnancy using machine learning techniques. The Journal of Maternal-Fetal & Neonatal Medicine, 35(13), 2457–2463. https://doi.org/10.1080/14767058.2020.1786517
  • Zhang, Z., Yang, L., Han, W., Wu, Y., Zhang, L., Gao, C., Jiang, K., Liu, Y., & Wu, H. (2022). Machine learning prediction models for gestational diabetes mellitus: Meta-analysis. Journal of Medical Internet Research, 24(3), e26634. https://doi.org/10.2196/26634