216
Views
0
CrossRef citations to date
0
Altmetric
Production & Manufacturing

A five-phase combinatorial approach for solving a fuzzy linear programming supply chain production planning problem

, ORCID Icon, &
Article: 2334566 | Received 30 Jan 2023, Accepted 20 Mar 2024, Published online: 22 Apr 2024

References

  • Akram, M., Shah, S. M. U., Al-Shamiri, M. M. A., & Edalatpanah, S. A. (2023). Extended DEA method for solving multi-objective transportation problem with fermatean fuzzy sets. AIMS Mathematics, 8(1), 924–961. https://doi.org/10.3934/math.2023045
  • Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
  • Chanas, S. (1989). Fuzzy programming in multiobjective linear programming—A parametric approach. Fuzzy Sets and Systems, 29(3), 303–313. https://doi.org/10.1016/0165-0114(89)90042-0
  • Cha-ume, K., & Chiadamrong, N. (2012). Simulation of retail supply chain behaviour and financial impact in an uncertain environment. International Journal of Logistics Systems and Management, 13(2), 162–186. https://doi.org/10.1504/IJLSM.2012.048934
  • Chutima, P., & Yothaboriban, N. (2017). Multi-objective mixed-model parallel assembly line balancing with a fuzzy adaptive biogeography-based algorithm. International Journal of Industrial and Systems Engineering, 26(1), 90–132. https://doi.org/10.1504/IJISE.2017.083182
  • De Rocquigny, E., Devictor, N., & Tarantola, S. (2008). Uncertainty setting and natures of uncertainty. In De Rocquigny, E., Devictor, N., & Tarantola, S. (Eds.), Uncertainty in industrial practice. Wiley.
  • Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613–626. https://doi.org/10.1080/00207727808941724
  • Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing, 10(4), 273–297. https://doi.org/10.1023/B:REOM.0000032115.22510.b5
  • Duncan, R. B. (1972). Characteristics of organizational environments and perceived environmental uncertainty. Administrative Science Quarterly, 17(3), 313–327. https://doi.org/10.2307/2392145
  • Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithm for multi-objective optimization, formulation, discussion and generalization. Proceedings of 5th International Conference on Genetic Algorithms (pp. 416–423).
  • Garg, H., Rani, M., Sharma, S. P., & Vishwakarma, Y. (2014). Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. Expert Systems with Applications, 41(7), 3157–3167. https://doi.org/10.1016/j.eswa.2013.11.014
  • Gupta, S., Haq, A., Ali, I., & Sarkar, B. (2021). Significance of multi-objective optimization in logistics problem for multi-product supply chain network under the intuitionistic fuzzy environment. Complex & Intelligent Systems, 7(4), 2119–2139. https://doi.org/10.1007/s40747-021-00326-9
  • Guua, S.-M., & Wu, Y.-K. (1999). Two-phase approach for solving the fuzzy linear programming problems. Fuzzy Sets and Systems, 107(2), 191–195. https://doi.org/10.1016/S0165-0114(97)00304-7
  • Hanczar, P., & Azadehranjbar, Z. (2022). A bi-objective sustainable supply chain redesign: What effect does energy availability have on redesign? Energies, 15(10), 3642. https://doi.org/10.3390/en15103642
  • Heilpem, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81–86.
  • Helton, J. C. (2009). Conceptual and computational basis for the quantification of margins and uncertainty, Sandia National Laboratories, Report SAND 2009–3055.
  • Huang, S., Lin, Y., Zhang, J., & Wang, P. (2023). Chance-constrained approach for decentralized supply chain network under uncertain cost. AIMS Mathematics, 8(5), 12217–12238. https://doi.org/10.3934/math.2023616
  • Hwang, C. L., & Masud, A. (1979). Multiple objective decision making. Methods and applications: A state of the art survey. In Lecture Notes in Economics and Mathematical Systems (Vol. 164). Springer-Verlag.
  • Jafaryeganeh, H., Ventura, M., & Guedes, S. C. (2020). Effect of normalization techniques in multi-criteria decision-making methods for the design of ship internal layout from a Pareto optimal set. Structural and Multidisciplinary Optimization, 62(4), 1849–1863. https://doi.org/10.1007/s00158-020-02581-9
  • Jana, B., & Roy, T. K. (2007). Multi-objective intuitionistic fuzzy linear programming and its application in transportation model. Notes Intuition Fuzzy Sets, 13(1), 34–51.
  • Ji, J., & Chiadamrong, N. (2022). Integrating mathematical and simulation approach for optimizing production and distribution planning with lateral transhipment in a supply chain. International Journal of Information Systems and Supply Chain Management, 15(1), 1–30. https://doi.org/10.4018/IJISSCM.2022010105
  • Kaur, P., & Rachana, K. N. L. (2016). An intuitionistic fuzzy optimization approach to vendor selection problem. Perspectives in Science, 8(1), 348–350. https://doi.org/10.1016/j.pisc.2016.04.071
  • Khan, S. A. R., Piprani, A. Z., & Zhang, Y. (2022). Digital technology and circular economy practices: Future of supply chains. Operations Management Research, 15(3–4), 676–688. https://doi.org/10.1007/s12063-021-00247-3
  • Khan, S. A. R., Tabish, M., & Zhang, Y. (2023). Embracement of industry 4.0 and sustainable supply chain practices under the shadow of practice-based view theory: Ensuring environmental sustainability in corporate sector. Journal of Cleaner Production, 398, 136609. https://doi.org/10.1016/j.jclepro.2023.136609
  • Kousar, S., Batool, M., Kausar, N., Pamucar, D., Ozbilge, E., & Tantay, B. (2022). Multi-objective intuitionistic fuzzy linear programming model for optimization of industrial closed-loop supply chain network. Advances in Production Engineering & Management, 17(3), 381–393. https://doi.org/10.14743/apem2022.3.443
  • Kumar, S., Edalatpanah, S. A., & Mandal, T. (2020). Application of linear fractional programming problem with fuzzy nature in industry sector. Filomat, 34(15), 5073–5084. https://doi.org/10.2298/FIL2015073D
  • Lawrence, P., & Lorsch, J. (1967). Organization and environment: Managing differentiation and integration.
  • Le, T. Q., Rianmora, S., & Kewcharoenwong, P. (2018). Intermodal network design in freight transportation systems [Paper presentation]. 2018 Thirteenth International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Pattaya, Thailand (pp. 1–6). https://doi.org/10.1109/KICSS45055.2018.8950621
  • Li, X., & Liu, B. (2006). A sufficient and necessary condition for credibility measures. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(05), 527–535. https://doi.org/10.1142/S0218488506004175
  • Mahmoudi, F., & Nasseri, S. H. (2019). A new approach to solve fully fuzzy linear programming problem. Mathematics, Computer Science, 6(2), 139–149.
  • Malhotra, R., & Bharati, S. K. (2016). Intuitionistic fuzzy two stage multiobjective transportation problems. Advances in Theoretical and Applied Mathematics, 11(3), 305–316.
  • Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 213(2), 455–465. https://doi.org/10.1016/j.amc.2009.03.037
  • Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations Research, 43(2), 264–281. https://doi.org/10.1287/opre.43.2.264
  • Parvathi, R., & Malathi, C. (2012). Intuitionistic fuzzy linear programming problems. World Applied Sciences Journal, 17(12), 1787–1791.
  • Pawar, S. V., Patel, P. L., & Mirajkar, A. (2020). Intuitionistic fuzzy approach in multi-objective optimization for KRBMC irrigation system, India. ISH Journal of Hydraulic Engineering, 28(sup1), 463–470. https://doi.org/10.1080/09715010.2020.1781700
  • Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic linear programming for socially responsible supply chain network design: A new approach. Fuzzy Sets and Systems, 206(1), 1–20. https://doi.org/10.1016/j.fss.2012.04.010
  • Roy, S. K., Ebrahimnejad, A., Verdegay, J. L., & Das, S. (2018). New approach for solving intuitionistic fuzzy multi-objective transportation problem. Indian Academy of Science, 43(3), 1–12.
  • Sapan, K. D. (2021). Optimization of fuzzy linear fractional programming problem with fuzzy numbers. Big Data and Computing Visions, 1(1), 30–35.
  • Sayed, M. A., & Sinna, M. A. (2020). A novel approach for fully intuitionistic fuzzy multi-objective fractional transportation problem. Alexandria Engineering Journal, 60(1), 1447–1463.
  • Shen, J., Jin, Y., & Liu, B, Department of Public Basic Courses, Nanjing Vocational University of Industry Technology No.1 Yangshan North Road, Nanjing 210023, China. (2022). Expected value model of an uncertain production inventory problem with deteriorating items. Journal of Advanced Computational Intelligence and Intelligent Informatics, 26(5), 684–690. https://doi.org/10.20965/jaciii.2022.p0684
  • Vluymans, S., Parthaláin, N. M., Cornelis, C., & Saeys, Y. (2019). Weight selection strategies for ordered weighted average based fuzzy rough sets. Information Sciences, 501(1), 155–171. https://doi.org/10.1016/j.ins.2019.05.085
  • Voskoglou, M. (2020). Assessment and linear programming under fuzzy conditions. Journal of Fuzzy Extension and Applications, 1(3), 198–216.
  • Wang, J.-Q., Nie, R., Zhang, H.-Y., & Chen, X.-H. (2013). New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Information Sciences, 251(1), 79–95. https://doi.org/10.1016/j.ins.2013.06.033
  • Wang, R., & Liang, T. (2005). Applying possibilistic linear programming to aggregate production planning. International Journal of Production Economics, 98(3), 328–341. https://doi.org/10.1016/j.ijpe.2004.09.011
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhang, X., Ma, W., & Chen, L. (2014). New similarity of triangular fuzzy number and its application. The Scientific World Journal, 2014(1), 1–7. https://doi.org/10.1155/2014/215047
  • Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3