228
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Hole size influence on the open hole tensile and flexural characteristics of aramid-basalt/epoxy composites

, , ORCID Icon &
Article: 2334911 | Received 12 Dec 2023, Accepted 20 Mar 2024, Published online: 10 Apr 2024

References

  • A. D7264. (2020). Standard test method for flexural properties of polymer matrix composite. https://doi.org/10.1520/D7264
  • Agarwal, B. D., & Broutman, L. J. (1990). Analysis and performance of fiber composites. 2nd ed. New Delhi: John Wiley & Sons Inc.
  • Agarwal, S., Pai, Y., Pai, D., & Mahesha, G. T. (2023). Assessment of ageing effect on the mechanical and damping characteristics of thin quasi-isotropic hybrid carbon-Kevlar/epoxy intraply composites and damping characteristics of thin intraply composites. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2235111
  • ASTM D3039/D3039M-14. (2014). Standard test method for tensile properties of polymer matrix composite. ASTM International.
  • ASTM D790. (2021). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, 1–6.
  • Bandaru, A. K., Patel, S., Sachan, Y., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2016). Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 90, 642–652. doi: https://doi.org/10.1016/j.compositesa.2016.08.031
  • Bandaru, A. K., Sachan, Y., Ahmad, S., Alagirusamy, R., & Bhatnagar, N. (2017). On the mechanical response of 2D plain woven and 3D angle-interlock fabrics. Composites Part B: Engineering, 118, 135–148. https://doi.org/10.1016/j.compositesb.2017.03.011
  • Basha, M., Wagih, A., Melaibari, A., Lubineau, G., & Eltaher, M. A. (2022). On the impact damage resistance and tolerance improvement of hybrid CFRP/Kevlar sandwich composites. Microporous and Mesoporous Materials, 333(January), 111732. https://doi.org/10.1016/j.micromeso.2022.111732
  • Bazan, P., & Wierzbicka-Miernik, A. (2021). A novel hybrid composites based on biopolyamide 10.10 with basalt/aramid fibers: Mechanical and thermal investigation. 223(June). https://doi.org/10.1016/j.compositesb.2021.109125
  • Bazhenov, S. L. (1995). Bending failure of aramid fibre-reinforced composite. Composites, 26(11), 757–765. https://doi.org/10.1016/0010-4361(95)98196-R
  • Belgacem, L., Ouinas, D., Aurelio, J., Olay, V., & Argüelles, A. (2018). Experimental investigation of notch effect and ply number on mechanical behavior of interply hybrid laminates (glass/carbon/epoxy). Composites Part B Engineering. 145(January), 189–196. https://doi.org/10.1016/j.compositesb.2018.03.026
  • Beyene, A. T., Belingardi, G., & Koricho, E. G. (2016). Effect of notch on quasi-static and fatigue flexural performance of twill E-glass/epoxy composite. Composite Structures, 153, 825–842. https://doi.org/10.1016/j.compstruct.2016.05.094
  • Bozkurt, Y. (2015). Hybridization effects on tensile and bending behavior of aramid/basalt fiber reinforced epoxy composites. https://doi.org/10.1002/pc
  • Bulut, M. (2017). Mechanical characterization of basalt/epoxy composite laminates containing graphene nanopellets. Composites Part B Engineering, 122, 71–78. https://doi.org/10.1016/j.compositesb.2017.04.013
  • Caminero, M. A., Lopez-Pedrosa, M., Pinna, C., & Soutis, C. (2013). Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation. Composites Part B: Engineering, 53, 76–91. https://doi.org/10.1016/j.compositesb.2013.04.050
  • Carl, Z. (1978). The flexural strength of aramid fiber composites. 12(4), 422–430. https://doi.org/10.1177/002199837801200407
  • Chawla, K. K. (2012). Composite materials: Science and engineering. 3rd ed. New York: Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74365-3
  • Chichane, A., Boujmal, R., & El Barkany, A. (2023). Bio-composites and bio-hybrid composites reinforced with natural fibers: Review. Materials Today: Proceedings, 72, 3471–3479. https://doi.org/10.1016/j.matpr.2022.08.132
  • Chowdhury, I. R., Nash, N. H., Portela, A., Dowd, N. P. O., & Comer, A. J. (2020). Analysis of failure modes for a non-crimp basalt fiber reinforced epoxy composite under flexural and interlaminar shear loading. Composite Structures, 245(April), 112317. https://doi.org/10.1016/j.compstruct.2020.112317
  • Cunningham, D., Harries, K. A., & Bell, A. J. (2015). Open-hole tension capacity of pultruded GFRP having staggered hole arrangement. Engineering Structures, 95, 8–15. https://doi.org/10.1016/j.engstruct.2015.03.042
  • Czél, G., & Wisnom, M. R. (2013). Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Composites Part A: Applied Science and Manufacturing, 52, 23–30. https://doi.org/10.1016/j.compositesa.2013.04.006
  • Czigány, T. (2006). Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Composites Science and Technology, 66(16), 3210–3220. https://doi.org/10.1016/j.compscitech.2005.07.007
  • Czigány, T., Vad, J., & Pölöskei, K. (2005). Basalt fiber as a reinforcement of polymer composites. Periodica Polytechnica Mechanical Engineering, 49(1), 3–14.
  • Dorey, G., Sidey, G. R., & Hutchings, J. (1978). Impact properties of carbon fibre/Kevlar 49 fibre hydrid composites. Composites, 9(1), 25–32. https://doi.org/10.1016/0010-4361(78)90514-1
  • Dorigato, A., & Pegoretti, A. (2014). Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. Journal of Composite Materials, 48(9), 1121–1130. https://doi.org/10.1177/0021998313482158
  • Elmahdy, A., & Verleysen, P. (2020). Mechanical behavior of basalt and glass textile composites at high strain rates: A comparison. Polymer Testing, 81(June 2019), 106224. https://doi.org/10.1016/j.polymertesting.2019.106224
  • Fernandes, O., Dutta, J., & Pai, Y. (2023). Effect of various factors and hygrothermal ageing environment on the low velocity impact response of fibre reinforced polymer composites- a comprehensive review. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2247228
  • Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015). A review on basalt fibre and its composites. Composites Part B: Engineering, 74, 74–94. Jun. https://doi.org/10.1016/j.compositesb.2014.12.034
  • Green, B. G., Wisnom, M. R., & Hallett, S. R. (2007). An experimental investigation into the tensile strength scaling of notched composites. Composites Part A: Applied Science and Manufacturing, 38(3), 867–878. https://doi.org/10.1016/j.compositesa.2006.07.008
  • Guo, Q., Zhang, Y., Li, D., Lv, Q., Sun, X., Ma, M., & Chen, L. (2021). Experimental and numerical investigation of open-hole tensile properties and damage mechanisms of 3D woven composites under weft-loading. Thin-Walled Structures, 161(December), 107455. https://doi.org/10.1016/j.tws.2021.107455
  • Gupta, M. K., & Srivastava, R. K. (2016). A review on characterization of hybrid fibre reinforced polymer composite. Gupta MK American Journal of Polymer Science & Engineering, 4(1), 1–7.
  • Hayashi, T. (1972). On the improvement of mechanical properties of composites by hybrid composition [Paper presentation]. Proc 8th Int Reinforced Plastics Conference, pp. 149–52.
  • Jule, L. T., Ramaswamy, K., Nagaprasad, N., Shanmugam, V., & Vignesh, V. (2021). Design and analysis of serial drilled hole in composite material. Materials Today: Proceedings, 45, 5759–5763. https://doi.org/10.1016/j.matpr.2021.02.587
  • Khashaba, U. A., Selmy, A. I., El-Sonbaty, I. A., & Megahed, M. (2007). GFR/EPOXY composites under static and fatigue loads. Composite Structures, 81(4), 606–613. https://doi.org/10.1016/j.compstruct.2006.11.005
  • Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13–23. https://doi.org/10.1016/0010-4361(87)90003-6
  • Kumar, S. A., Rajesh, R., & Pugazhendhi, S. (2020). A review of stress concentration studies on fibre composite panels with holes/cutouts. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 234(11), 1461–1472. https://doi.org/10.1177/1464420720944571
  • Mallick, P. K. (2007). Fiber-reinforced composites materials, manufacturing and design. 3rd ed. Boca Raton: CRC Press Taylor & Francis Group. https://doi.org/10.3144/expresspolymlett.2007.115
  • Neto, J., Queiroz, H., Aguiar, R., Lima, R., Cavalcanti, D., & Banea, M. D. (2022). A review of recent advances in hybrid natural fiber reinforced polymer composites. Journal of Renewable Materials, 10(3), 561–589. https://doi.org/10.32604/jrm.2022.017434
  • Pai, Y., Dayananda Pai, K., & Vijaya Kini, M. (2023). Effect of ageing conditions on the low velocity impact behavior and damage characteristics of aramid-basalt/epoxy hybrid interply composites. Engineering Failure Analysis, 152(April), 107492. https://doi.org/10.1016/j.engfailanal.2023.107492
  • Pai, Y., Pai K, D., & Kini, M. V. (2021). Effect of aramid fabric orientation angle on the mechanical characteristics of basalt-aramid/epoxy hybrid interply composites. Materials Research, 24(5) https://doi.org/10.1590/1980-5373-mr-2021-0209
  • Pai, Y., Pai K, D., & Kini, M. V. (2022). Experimental investigations on the moisture absorption and mechanical behaviour of basalt-aramid/epoxy hybrid interply composites under different ageing environments. Cogent Engineering, 9(1), 0–20. https://doi.org/10.1080/23311916.2022.2080354
  • Pai, Y., Pai, D. K., & Kini, M. V. (2021a). Evaluation of the mechanical characteristics of hygrothermally aged 2-D basalt-aramid/epoxy hybrid interply composites. Journal of Physics: Conference Series, 2070(1), 012234. https://doi.org/10.1088/1742-6596/2070/1/012234
  • Pai, Y., Pai, K. D., & Kini, M. V. (2021b). A review on low velocity impact study of hybrid polymer composites. Materials Today: Proceedings, 46, 9073–9078. https://doi.org/10.1016/j.matpr.2021.05.390
  • Pandita, S. D., Yuan, X., Manan, M. A., Lau, C. H., Subramanian, A. S., & Wei, J. (2014). Evaluation of jute/glass hybrid composite sandwich: Water resistance, impact properties and life cycle assessment. Journal of Reinforced Plastics and Composites, 33(1), 14–25. https://doi.org/10.1177/0731684413505349
  • Pandya, K. S., Veerraju, C., & Naik, N. K. (2011). Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Materials & Design, 32(7), 4094–4099. https://doi.org/10.1016/j.matdes.2011.03.003
  • Phillips, L. N. (1976). The hybrid effect – Does it exist? Composites, 7(1), 7–8. https://doi.org/10.1016/0010-4361(76)90273-1
  • Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112–121. https://doi.org/10.1016/j.compositesb.2017.09.008
  • Sarasini, F., Tirillò, J., D'Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., & Gaudenzi, P. (2016). Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144–153. https://doi.org/10.1016/j.compositesb.2016.01.050
  • Sarasini, F., Tirillò, J., Ferrante, L., Valente, M., Valente, T., Lampani, L., Gaudenzi, P., Cioffi, S., Iannace, S., & Sorrentino, L. (2014). Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites. Composites Part B: Engineering, 59, 204–220. https://doi.org/10.1016/j.compositesb.2013.12.006
  • Sarasini, F., Tirillò, J., Valente, M., Ferrante, L., Cioffi, S., Iannace, S., & Sorrentino, L. (2013). Hybrid composites based on aramid and basalt woven fabrics: Impact damage modes and residual flexural properties. Materials & Design, 49, 290–302. https://doi.org/10.1016/j.matdes.2013.01.010
  • Sarasini, F., Tirillò, J., Valente, M., Valente, T., Cioffi, S., Iannace, S., & Sorrentino, L. (2013). Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Composites Part A: Applied Science and Manufacturing, 47(1), 109–123. https://doi.org/10.1016/j.compositesa.2012.11.021
  • Sebaey, T. A., & Wagih, A. (2019). Flexural properties of notched carbon – Aramid hybrid composite laminates. Journal of Composite Materials, 53(28-30), 4137–4148. https://doi.org/10.1177/0021998319855773
  • Shaari, N., & Jumahat, A. (2017). Hole Size effects on the open hole tensile properties of woven kevlar-glass fibre hybrid composite laminates. Materialstoday: Proceedings, 25, 309–318.
  • Standard (ASTM). (2011). D5766/D5766M-11 Standard test method for open-hole tensile strength of polymer matrix composite. American Society for Testing and Materials, 11(Reapproved), 1–7. https://doi.org/10.1520/D5766
  • Subagia, I. D. G. A., Kim, Y., Tijing, L. D., Sang, C., & Kyong, H. (2014). Composites: Part B Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Composites Part B Engineering, 58, 251–258. https://doi.org/10.1016/j.compositesb.2013.10.027
  • Sun, G., Wang, L., Chen, D., & Luo, Q. (2019). Tensile performance of basalt fiber composites with open circular holes and straight notches. International Journal of Mechanical Sciences, 176(August), 105517. https://doi.org/10.1016/j.ijmecsci.2020.105517
  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Composites: Part A fibre hybridisation in polymer composites: A review. Composites Part A Applied Science and Manufacturing. 67, 181–200. https://doi.org/10.1016/j.compositesa.2014.08.027
  • Vara, V., & Talupula, S. (2018). ScienceDirect A review on reinforcement of basalt and aramid (Kevlar 129) fibers. Materials Today: Proceedings, 5(2), 5993–5998. https://doi.org/10.1016/j.matpr.2017.12.202
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., Velmurugan, R., & Shankar, K. (2018). Advanced 3D and 2D damage assessment of low velocity impact response of glass and Kevlar fiber reinforced epoxy hybrid composites. Advances in Materials and Processing Technologies, 4(3), 493–510. https://doi.org/10.1080/2374068X.2018.1465310
  • Velumayil, R. (2022). Hybridization effect on mechanical properties of basalt/kevlar/epoxy composite laminates.
  • Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J., & Qiu, Y. (2008). Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Composites Science and Technology, 68(2), 444–450. https://doi.org/10.1016/j.compscitech.2007.06.016
  • Wisnom, M. R., Khan, B., & Hallett, S. R. (2008). Size effects in unnotched tensile strength of unidirectional and quasi-isotropic carbon/epoxy composites. Composite Structures, 84(1), 21–28. https://doi.org/10.1016/j.compstruct.2007.06.002
  • Zubair, M., & Pai, Y. (2019). Review on impact response of polymer composites. Journal of Mechanical Engineering Research and Developments, 42(4), 238–242. https://doi.org/10.26480/jmerd.04.2019.238.242