293
Views
0
CrossRef citations to date
0
Altmetric
Chemical Engineering

Life cycle analysis for the production of volatile fatty acids from wastewater treatment plant sludge

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2335846 | Received 20 Aug 2023, Accepted 22 Mar 2024, Published online: 11 Apr 2024

References

  • Amado, M., Carrasco, J., Ochoa, L. D., Rangel, C. J., Becerra, A. P., Cabeza, I. O., & Acevedo, P. A. (2021). Technical and environmental analysis of large-scale pig manure digestion through process simulation and life cycle assessment. Chemical Engineering Transactions, 87, 439–444. https://doi.org/10.3303/CET2187074
  • Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042
  • Bacenetti, J., Sala, C., Fusi, A., & Fiala, M. (2016). Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Applied Energy, 179(1), 669–686. https://doi.org/10.1016/j.apenergy.2016.07.029
  • Chen, Y., Jiang, X., Xiao, K., Shen, N., Zeng, R. J., & Zhou, Y. (2017). Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase - Investigation on dissolved organic matter transformation and microbial community shift. Water Res., 112, 261–268. https://doi.org/10.1016/j.watres.2017.01.067
  • Cusenza, M. A., Longo, S., Guarino, F., & Cellura, M. (2021). Energy and environmental assessment of residual bio-wastes management strategies. Journal of Cleaner Production, 285(20), 124815. https://doi.org/10.1016/j.jclepro.2020.124815
  • Dahiya, S., Lingam, Y., & Mohan, V. (2023). Understanding acidogenesis towards green hydrogen and volatile fatty acid production – Critical analysis and circular economy perspective. Chemical Engineering Journal, 464, 141550. https://doi.org/10.1016/j.cej.2023.141550
  • Di Maria, F., & Micale, C. (2014). Life cycle analysis of incineration compared to anaerobic digestion followed by composting for managing organic waste: the influence of system components for an Italian district. The International Journal of Life Cycle Assessment, 20(3), 377–388. https://doi.org/10.1007/s11367-014-0833-z
  • Duan, N., Khoshnevisan, B., Lin, C., Liu, Z., & Liu, H. (2020). Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environment International, 137, 105522. https://doi.org/10.1016/j.envint.2020.105522
  • Elginoz, N., Atasoy, M., Finnveden, G., & Cetecioglu, Z. (2020). Ex-ante life cycle assessment of volatile fatty acid production from dairy wastewater. Journal of Cleaner Production, 269, 122267. https://doi.org/10.1016/j.jclepro.2020.122267
  • Elginoz, N., Khatami, K., Owusu-Agyeman, I., & Cetecioglu, Z. (2020). Life cycle assessment of an innovative food waste management system. Frontiers in Sustainable Food Systems, 4, 23. https://doi.org/10.3389/fsufs.2020.00023
  • Ferdous, J., Bensebaa, F., & Pelletier, N. (2023). Integration of LCA, TEA, process simulation and optimization: A systematic review of current practices and scope to propose a framework for pulse processing pathways. Journal of Cleaner Production, 402, 136804. https://doi.org/10.1016/j.jclepro.2023.136804
  • Fusi, A., Bacenetti, J., Fiala, M., & Azapagic, A. (2016). Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Frontiers in Bioengineering and Biotechnology, 4, 26. https://doi.org/10.3389/fbioe.2016.00026
  • Gálvez, J., Greses, S., Magdalena, J.-A., Iribarren, D., Tomás-Pejó, E., & González-Fernández, C. (2021). Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes. Bioresource Technology, 321, 124528. https://doi.org/10.1016/j.biortech.2020.124528
  • Garfí, M., Castro, L., Montero, N., Escalante, H., & Ferrer, I. (2019). Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresource Technology, 274, 541–548. https://doi.org/10.1016/j.biortech.2018.12.007
  • Gracia, J., Mosquera, J., Montenegro, C., Acevedo, P., & Cabeza, C. (2020). Volatile fatty acids production from fermentation of waste activated sludge. Chemical Engineering Transactions, 79, 217–222. https://doi.org/10.3303/CET2079037
  • Gutiérrez, E., Garcia-Aguirre, J., Irizar, I., & Aymerich, E. (2018). From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Waste Management (New York, N.Y.), 77, 203–212. https://doi.org/10.1016/j.wasman.2018.05.027
  • Ingrao, C., Bacenetti, J., Adamczyk, J., Ferrante, V., Messineo, A., & Huisingh, D. (2019). Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of life cycle assessments. Renewable Energy. 136, 296–307. https://doi.org/10.1016/j.renene.2019.01.023
  • International Organization for Standardization. (2006). ISO 14040 - Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization.
  • Jin, Y., Chen, T., Chen, X., & Yu, Z. (2015). Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Applied Energy, 151, 227–236. https://doi.org/10.1016/j.apenergy.2015.04.058
  • Karolinczak, B., Walczak, J., Bogacka, M., & Zubrowska-Sudol, M. (2024). Life cycle assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant. The Science of the Total Environment, 907, 167801. https://doi.org/10.1016/j.scitotenv.2023.167801
  • Katakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. Journal of Cleaner Production, 249, 119342. https://doi.org/10.1016/j.jclepro.2019.119342
  • Khan, M. A., Ngo, H. H., Guo, W. S., Liu, Y., Nghiem, L. D., Hai, F. I., Deng, L. J., Wang, J., & Wu, Y. (2016). Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresource Technology, 219, 738–748. https://doi.org/10.1016/j.biortech.2016.08.073
  • Kumar, G., Ponnusamy, V. K., Bhosale, R. R., Shobana, S., Yoon, J., Bhatia, S. K., Rajesh Banu, J., & Kim, S. (2019). A review on the conversion of volatile fatty acids to polyhydroxyalkanoates. Bioresource Technology, 287, 121427. https://doi.org/10.1016/j.biortech.2019.121427
  • Mayer, F., Bhandari, R., & Gäth, S. (2019). Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. The Science of the Total Environment, 672, 708–721. https://doi.org/10.1016/j.scitotenv.2019.03.449
  • Mosquera, J., Rangel, C., Thomas, J., Santis, A., Acevedo, P., & Cabeza, I. (2021). Biogas production by pilot-scale anaerobic co-digestion and life cycle assessment using a real scale scenario: Independent parameters and co-substrates influence. Processes, 9(11), 1875. https://doi.org/10.3390/pr9111875
  • Pinto, A. S. S., McDonald, L. J., Jones, R. J., Massanet-Nicolau, J., Guwy, A., & McManus, M. (2023). Production of volatile fatty acids by anaerobic digestion of biowastes: Techno-economic and life cycle assessments. Bioresource Technology, 388, 129726. https://doi.org/10.1016/j.biortech.2023.129726
  • Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305–3321. https://doi.org/10.1016/j.apenergy.2010.05.011
  • Rigon, M. R., Zortea, R., Moraes, C. A. M., & Modolo, R. C. E. (2019). Suggestion of life cycle impact assessment methodology: Selection criteria for environmental impact categories. In A. Petrillo and F. De Felice (Eds.), New frontiers on life cycle assessment—Theory and application. IntechOpen.
  • Ruiz, D., Miguel, G. S., Corona, B., Gaitero, A., & Domínguez, A. (2018). Environmental and economic analysis of power generation in a thermophilic biogas plant. The Science of the Total Environment, 633(15), 1418–1428. https://doi.org/10.1016/j.scitotenv.2018.03.169
  • Sadhukhan, J., Sen, S., & Gadkari, S. (2021). The mathematics of life cycle sustainability assessment. Journal of Cleaner Production, 309(1), 127457. https://doi.org/10.1016/j.jclepro.2021.127457
  • Strazzera, G., Battista, F., Garcia, N., Frison, N., & Bolzonella, D. (2018). Volatile fatty acids production from food wastes for biorefinery platforms: A review. Journal of Environmental Management, 226, . 78–288. https://doi.org/10.1016/j.jenvman.2018.08.039
  • Tong, H., Shen, Y., Zhang, J., Wang, C.-H., Shu Ge, T., & Wah Tong, Y. (2018). A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries. Applied Energy, 225, 1143–1157. https://doi.org/10.1016/j.apenergy.2018.05.062
  • Villanova, R., Murcia, D. A., Correa, A., López, G., Hernández, P., Gávara, R., & Navas, L. M. (2023). Environmental consequences of shelf life extension: Conventional versus active packaging for fresh-cut salads. Agronomy, 13(11), 2749. https://doi.org/10.3390/agronomy13112749
  • Xu, C., Shi, W., Hong, J., Zhang, F., & Chen, w (2015). Life cycle assessment of food waste-based biogas generation. Renewable and Sustainable Energy Reviews, 49, 169–177. https://doi.org/10.1016/j.rser.2015.04.164
  • Yuan, Y., Hu, X., Chen, H., Zhou, Y., Zhou, Y., & Wang, D. (2019). Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste-activated sludge. The Science of the Total Environment, 694, 133741. https://doi.org/10.1016/j.scitotenv.2019.133741
  • Zhou, M., Yan, B., Wong, J., & Zhang, Y. (2018). Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 248(Pt A), 68–78. https://doi.org/10.1016/j.biortech.2017.06.121