143
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Surface quality improvement of AZ31 Mg alloy by a combination of modified Taguchi method and simple multi objective optimization procedure

ORCID Icon, , , , ORCID Icon, ORCID Icon & show all
Article: 2338476 | Received 06 Feb 2024, Accepted 30 Mar 2024, Published online: 15 Apr 2024

References

  • Anantha, M. T., Buddi, T., & Boggarapu, N. R. (2023a). Multi-objective optimization basing modified Taguchi method to arrive the optimal die design for CGP of AZ31 magnesium alloy. International Journal on Interactive Design and Manufacturing (IJIDeM), 7, 1–10. https://doi.org/10.1007/s12008-022-01176-6
  • Anantha, M. T., Buddi, T., & Boggarapu, N. R. (2023b). Utilisation of fuzzy logic and genetic algorithm to seek optimal corrugated die design for CGP of AZ31 magnesium alloy. Advances in Materials and Processing Technologies, 22, 1–15. https://doi.org/10.1080/2374068X.2023.2192135
  • Brandão, P., Infante, V., & Deus, A. M. (2016). Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine. Procedia Structural Integrity, 1, 189–196. https://doi.org/10.1016/j.prostr.2016.02.026
  • Buddi, T., Singh, S. K., & Rao, B. N. (2018). Optimum process parameters for plywood manufacturing using soya meal adhesive. Materials Today: Proceedings, 5(9), 18739–18744. https://doi.org/10.1016/j.matpr.2018.06.220
  • Danthala, S., Rao, S. S., Rao, B. N., & Mannepalli, K. (2021). Multi-objective optimization with modified Taguchi approach to specify optimal robot spray painting process parameters. International Journal of Nonlinear Analysis and Applications, 12(2), 1163–1174. https://doi.org/10.22075/ijnaa.2021.5193
  • Dharmendra, B. V., Kodali, S. P., & Rao, B. N. (2019). A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. Heliyon, 5(8), e02326. https://doi.org/10.1016/j.heliyon.2019.e02326
  • Dharmendra, B. V., Kodali, S. P., & Boggarapu, N. R. (2020). Multi-objective optimization for optimum abrasive water jet machining process parameters of Inconel718 adopting the Taguchi approach. Multidiscipline Modeling in Materials and Structures, 16(2), 306–321. https://doi.org/10.1108/MMMS-10-2018-0175
  • Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., & Chattopadhyay, A. B. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21(1), 466–479. https://doi.org/10.1016/j.ymssp.2005.10.010
  • Goyal, K. K., Sharma, N., Dev Gupta, R., Singh, G., Rani, D., Banga, H. K., Kumar, R., Pimenov, D. Y., & Giasin, K. (2022). A soft computing-based analysis of cutting rate and recast layer thickness for AZ31 alloy on WEDM using RSM-MOPSO. Materials, 15(2), 635. https://doi.org/10.3390/ma15020635
  • Hsiang, S. H., & Lin, Y. W. (2019). Optimization of the extrusion process for magnesium alloy sheets using the fuzzy-based Taguchi method. The Arabian Journal for Science and Engineering, 34(1C), 175–185. https://doi.org/10.1007/s12289-011-1041-z
  • Jiang, M. G., Yan, H., & Chen, R. S. (2015). Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. Journal of Alloys and Compounds, 650, 399–409. https://doi.org/10.1016/j.jallcom.2015.07.281
  • Jiang, Y., Guan, L., & Tang, G. (2016). Recrystallization and texture evolution of cold-rolled AZ31 Mg alloy treated by rapid thermal annealing. Journal of Alloys and Compounds, 656, 272–277. https://doi.org/10.1016/j.jallcom.2015.09.155
  • Jouini, N., Ruslan, M. S., Ghani, J. A., & Che Haron, C. H. (2023). Sustainable high-speed milling of magnesium alloy AZ91D in dry and cryogenic conditions. Sustainability, 15(4), 3760. https://doi.org/10.3390/su15043760
  • Karthik, R., Viswanathan, R., Balaji, J., Sivashankar, N., & Arivazhagan, R. (2021). Optimization of WEDM parameters for machining of AZ31B Mg alloy using Taguchi method. IOP Conference Series: Materials Science and Engineering, 1013(1), 012005. https://doi.org/10.1088/1757-899X/1013/1/012005
  • Konduri, S. S., Kalavala, V. M., Mandala, P., Manapragada, R. R., & Boggarapu, N. R. (2017). Application of Taguchi approach to seek optimum drilling parameters for woven fabric carbon fibre/epoxy laminates. MAYFEB Journal of Mechanical Engineering, 1. https://doi.org/10.11648/J.AJNAME.20160101.11
  • Koneru, S., Srinath, A., & Nageswara Rao, B. (2022). Multi objective optimization for the optimal heat pipe working parameters based on Taguchi’s design of experiments. Heat Transfer, 51(3), 2510–2523. https://doi.org/10.1002/htj.22410
  • Koneru, S., Srinath, A., Rao, B. N., & Buddi, T. (2023). Simplified optimal design of NU202 cylindrical roller bearing and validation through GA. International Journal on Interactive Design and Manufacturing (IJIDeM), 22, 1–2. https://doi.org/10.1007/s12008-023-01402-9
  • Kurra, S., & Regalla, S. P. (2015). Multi-objective optimisation of single point incremental sheet forming using Taguchi-based grey relational analysis. International Journal of Materials Engineering Innovation, 6(1), 74–90. https://doi.org/10.1504/IJMATEI.2015.069802
  • Lu, L., Hu, S., Liu, L., & Yin, Z. (2016). High speed cutting of AZ31 magnesium alloy. Journal of Magnesium and Alloys, 4(2), 128–134. https://doi.org/10.1016/j.jma.2016.04.004
  • Miladinovic, S., Gajević, S., Devada, L., & Boggarapu, N. R. (2021). Parameters identification and minimization of safety coefficient for surface durability of internal planetary gear using the modified Taguchi approach. Test Engineering and Management. https://scidar.kg.ac.rs/handle/123456789/16600
  • Moradpour, M., Khodabakhshi, F., & Eskandari, H. (2018). Microstructure–mechanical property relationship in an Al–Mg alloy processed by constrained groove pressing-cross route. Materials Science and Technology, 34(8), 1003–1017. https://doi.org/10.1080/02670836.2017.1416906
  • Mordike, B. L., & Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37–45.(00)01351-4 https://doi.org/10.1016/S0921-5093
  • Muni Tanuja, A., Kumar, A., & Nageswara Rao, B. (2022). Review on the application of CGP to improve AZ31 Mg alloy properties. Applications of computational methods in manufacturing and product design: Select proceedings of IPDIMS 2020 (pp. 237–246). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0296-3_21
  • Ömer, A. S. (2019). Optimization of surface roughness in turning of AZ31 magnesium alloys with Taguchi method. Gazi University Journal of Science Part A: Engineering and Innovation, 6(1), 25–32. http://dergipark.gov.tr/gujsa
  • Rajyalakshmi, K., & Boggarapu, N. R. (2018). Expected range of the output response for the optimum input parameters utilizing the modified Taguchi approach. Multidiscipline Modeling in Materials and Structures, 15(2), 508–522. https://doi.org/10.1108/MMMS-05-2018-0088
  • Rajyalakshmi, K., & Rao, B. N. (2019). Modified Taguchi approach to trace the optimum GMAW process parameters on weld dilution for ST-37 steel plates. Journal of Testing and Evaluation, 47(4), 3209–3223. https://doi.org/10.1520/JTE20180617
  • Ramya, K. U., Koneru, S. I., & Santhosh Kumar, R. (2018). Multivariable optimization of surface grinding process using genetic algorithm. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 77–486. https://doi.org/10.1007/s001700170167
  • Ross P. J. (1989). Taguchi techniques for quality engineering. McGraw-Hill.
  • Sanjeevannavar, M. B., Banapurmath, N. R., Soudagar, M. E., Atgur, V., Hossain, N., Mujtaba, M. A., Khan, T. Y., Rao, B. N., Ismail, K. A., & Elfasakhany, A. (2022). Performance indicators for the optimal BTE of biodiesels with additives through engine testing by the Taguchi approach. Chemosphere, 288(Pt 2), 132450. https://doi.org/10.1016/j.chemosphere.2021.132450
  • Santhakumar, J., & Iqbal, U. M. (2022 Optimization of process variables for surface roughness and tool wear deviation of AZ31 alloy during face milling [Paper presentation]. AIP Conference Proceedings (Vol. 2460). https://doi.org/10.1063/5.0095647
  • Saritha, P., Satyadevi, A., & Raju, P. R. (2019). Investigation of surface roughness on hybrid composites using stir casting technique. I-Manager’s Journal on Mechanical Engineering, 9(3), 26. https://doi.org/10.26634/jme.9.3.15891
  • Satyanarayana, G., Narayana, K. L., & Nageswara Rao, B. (2018). Identification of optimum laser beam welding process parameters for E110 zirconium alloy butt joint based on Taguchi-CFD simulations. Lasers in Manufacturing and Materials Processing, 5(2), 182–199. https://doi.org/10.1007/s40516-018-0061-7
  • Satyanarayana, G., Narayana, K. L., & Nageswara Rao, B. (2019). Optimal laser welding process parameters and expected weld bead profile for P92 steel. SN Applied Sciences, 1(10), 1. https://doi.org/10.1007/s42452-019-1333-3
  • Satyanarayana, G., Narayana, K. L., & Rao, B. N. (2021). Incorporation of Taguchi approach with CFD simulations on laser welding of spacer grid fuel rod assembly. Materials Science and Engineering: B, 269, 115182. https://doi.org/10.1016/j.mseb.2021.115182
  • Singaravelu, J., Jeyakumar, D., & Nageswara Rao, B. (2012). Reliability and safety assessments of the satellite separation process of a typical launch vehicle. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 9(4), 369–382. https://doi.org/10.1177/1548512911401939
  • Sivam, S. S. S., Karuppaiah, S. M., Yedida, B. K., Atluri, J. R., & Mathur, S. (2018). Multi response optimization of setting input variables for getting better product quality in machining of magnesium AM60 by grey relation analysis and ANOVA. Periodica Polytechnica Mechanical Engineering, 62(2), 118–125. https://doi.org/10.3311/PPme.11034
  • Sivam, S. S., Saravanan, K., Pradeep, N., Moorthy, K. S., & Rajendrakumar, S. (2018). Grey relational analysis and anova to determine the optimum process parameters for friction stir welding of Ti and Mg alloys. Periodica Polytechnica Mechanical Engineering, 62(4), 277–283. https://doi.org/10.3311/PPme.12117
  • Tan, J., & Ramakrishna, S. (2021). Applications of magnesium and its alloys: A review. Applied Sciences, 11(15), 6861. https://doi.org/10.3390/app11156861
  • Wang, T., Zhu, T., Sun, J., Wu, R., & Zhang, M. (2015). Influence of rolling directions on microstructure, mechanical properties and anisotropy of Mg-5Li-1Al-0.5 Y alloy. Journal of Magnesium and Alloys, 3(4), 345–351. https://doi.org/10.1016/j.jma.2015.11.001
  • Wankhede, P., Ram, M. V. K., Suresh, K., & Priyadarshini, A. (2023). Integrated fuzzy AHP and fuzzy TOPSIS for multi response optimization in incremental forming process. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(2), 83–95. https://doi.org/10.1007/s12008-023-01246-3
  • Zagórski, I., Szczepaniak, A., Kulisz, M., & Korpysa, J. (2022). Influence of the tool cutting edge helix angle on the surface roughness after finish milling of magnesium alloys. Materials, 15(9), 3184. https://doi.org/10.3390/ma15093184
  • Zakaria, M. S., Mustapha, M., Azmi, A. I., Ahmad, A., Danish, M., & Rubaiee, S. (2022). Machinability investigations of AZ31 magnesium alloy via submerged convective cooling in turning process. Journal of Materials Research and Technology, 19, 3685–3698. https://doi.org/10.1016/j.jmrt.2022.06.127