335
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Efficient power allocation for downlink MIMO-NOMA-based visible light communication systems

, ORCID Icon &
Article: 2340234 | Received 30 Jul 2022, Accepted 03 Apr 2024, Published online: 15 Apr 2024

References

  • Abdelhady, A. M., Amin, O., Chaaban, A., Shihada, B., & Alouini, M.-S. (2019). Downlink resource allocation for dynamic TDMA-based VLC systems. IEEE Transactions on Wireless Communications, 18(1), 108–120. https://doi.org/10.1109/TWC.2018.2877629
  • Arnon, S., Barry, J., Karagiannidis, G., Schober, R., & Uysal, M. (2012). Advanced optical wireless communication systems. Cambridge University Press.
  • Bawazir, S. S., Sofotasios, P. C., Muhaidat, S., Al-Hammadi, Y., & Karagiannidis, G. K. (2018). Multiple access for visible light communications: Research challenges and future trends. IEEE Access. 6, 26167–26174. https://doi.org/10.1109/ACCESS.2018.2832088
  • Burton, A., Le Minh, H., Ghassemlooy, Z., Bentley, E., and Botella, C. (2014). Experimental demonstration of 50-mb/s visible light communications using 4×4 mimo.IEEE Photonics Technology Letters, 26(9):945–948. https://doi.org/10.1109/LPT.2014.2310638
  • Chen, C., Yang, Y., Deng, X., Du, P., Yang, H., Chen, Z., & Zhong, W.-D. (2019). Noma for mimo visible light communications: A spatial domain perspective. 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.
  • Chen, C., Zhong, W.-D., & Wu, D. (2017). On the coverage of multiple-input multiple-output visible light communications. Journal of Optical Communications and Networking, 9(9), D31–D41. https://doi.org/10.1364/JOCN.9.000D31
  • Chen, C., Zhong, W.-D., Yang, H., & Du, P. (2017). On the performance of mimo-noma-based visible light communication systems. IEEE Photonics Technology Letters, 30(4), 307–310. https://doi.org/10.1109/LPT.2017.2785964
  • Chen, Z., & Haas, H. (2015). Space division multiple access in visible light communications. In 2015 IEEE International Conference on Communications (ICC) (pp. 5115–5119). IEEE.
  • Cui, K., Chen, G., Xu, Z., & Roberts, R. D. (2010). Line-of-sight visible light communication system design and demonstration. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010) (pp. 621–625). IEEE. https://doi.org/10.1109/CSNDSP16145.2010.5580360
  • Deng, X., Mardanikorani, S., Zhou, G., & Linnartz, J.-P M. (2019). Dc-bias for optical OFDM in visible light communications. IEEE Access. 7, 98319–98330. https://doi.org/10.1109/ACCESS.2019.2928944
  • Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505. https://doi.org/10.1109/LSP.2014.2343971
  • Guan, X., Yang, Q., Hong, Y., & Chan, C. C.-K. (2016). Non-orthogonal multiple access with phase pre-distortion in visible light communication. Optics Express, 24(22), 25816–25823. https://doi.org/10.1364/OE.24.025816
  • Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE, 85(2), 265–298. https://doi.org/10.1109/5.554222
  • Komine, T., & Nakagawa, M. (2004). Fundamental analysis for visible-light communication system using led lights. IEEE Transactions on Consumer Electronics, 50(1), 100–107. https://doi.org/10.1109/TCE.2004.1277847
  • Li, X., Vucic, J., Jungnickel, V., & Armstrong, J. (2012). On the capacity of intensity-modulated direct-detection systems and the information rate of ACO-OFDM for indoor optical wireless applications. IEEE Transactions on Communications, 60(3), 799–809. https://doi.org/10.1109/TCOMM.2012.020612.090300
  • Lin, B., Ghassemlooy, Z., Tang, X., Li, Y., & Zhang, M. (2017). Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission. Optics Communications, 402, 52–55. https://doi.org/10.1016/j.optcom.2017.05.069
  • Liu, X., Chen, Z., Wang, Y., Zhou, F., Luo, Y., & Hu, R. Q. (2019). Ber analysis of NOMA-enabled visible light communication systems with different modulations. IEEE Transactions on Vehicular Technology, 68(11), 10807–10821. https://doi.org/10.1109/TVT.2019.2938909
  • Marshoud, H., Kapinas, V. M., Karagiannidis, G. K., & Muhaidat, S. (2016). Non-orthogonal multiple access for visible light communications. IEEE Photonics Technology Letters, 28(1), 51–54. https://doi.org/10.1109/LPT.2015.2479600
  • Marshoud, H., Muhaidat, S., Sofotasios, P. C., Hussain, S., Imran, M. A., & Sharif, B. S. (2018). Optical non-orthogonal multiple access for visible light communication. IEEE Wireless Communications, 25(2), 82–88. https://doi.org/10.1109/MWC.2018.1700122
  • Parikh, H., Chokshi, J., Gala, N., & Biradar, T. (2013). Wirelessly transmitting a grayscale image using visible light. In 2013 International Conference on Advances in Technology and Engineering (ICATE) (pp. 1–6). IEEE.
  • Qiu, Y., Chen, S., Chen, H.-H., & Meng, W. (2018). Visible light communications based on CDMA technology. IEEE Wireless Communications, 25(2), 178–185. https://doi.org/10.1109/MWC.2017.1700051
  • Sung, J.-Y., Yeh, C.-H., Chow, C.-W., Lin, W.-F., & Liu, Y. (2015). Orthogonal frequency-division multiplexing access (OFDMA) based wireless visible light communication (VLC) system. Optics Communications, 355, 261–268. https://doi.org/10.1016/j.optcom.2015.06.070
  • Yang, Z., Xu, W., Pan, C., Pan, Y., & Chen, M. (2017). On the optimality of power allocation for NOMA downlinks with individual QoS constraints. IEEE Communications Letters, 21(7), 1649–1652. https://doi.org/10.1109/LCOMM.2017.2689763
  • Yin, L., Popoola, W. O., Wu, X., & Haas, H. (2016). Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Transactions on Communications, 64(12), 5162–5175. https://doi.org/10.1109/TCOMM.2016.2612195
  • Zeng, L., O'Brien, D., Minh, H., Faulkner, G., Lee, K., Jung, D., Oh, Y., & Won, E. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662. https://doi.org/10.1109/JSAC.2009.091215