335
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

Solar photovoltaic generation and electrical demand forecasting using multi-objective deep learning model for smart grid systems

, ORCID Icon, &
Article: 2340302 | Received 02 Jun 2023, Accepted 03 Apr 2024, Published online: 20 Apr 2024

References

  • Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55, 102052. https://doi.org/10.1016/j.scs.2020.102052
  • Akhter, M. N., Mekhilef, S., Mokhlis, H., Almohaimeed, Z. M., Muhammad, M. A., Khairuddin, A. S. M., Akram, R., & Hussain, M. M. (2022). An hour-ahead pv power forecasting method based on an rnn-lstm model for three different pv plants. Energies, 15(6), 2243. https://doi.org/10.3390/en15062243
  • Boum, A. T., Foba Kakeu, V. J., Mbey, C. F., & Yem Souhe, F. G. (2022). Photovoltaic power generation forecasting using a novel hybrid intelligent model in smart grid. Computational Intelligence and Neuroscience, 2022, 7495548–7495513. https://doi.org/10.1155/2022/7495548
  • Chen, Y., & Zhang, D. (2021). Theory-guided deep-learning for electrical load forecasting (tgdlf) via ensemble long short-term memory. Advances in Applied Energy, 1, 100004. https://doi.org/10.1016/j.adapen.2020.100004
  • Chung, W. H., Gu, Y. H., & Yoo, S. J. (2022). District heater load forecasting based on machine learning and parallel cnn-lstm attention. Energy, 246(123350), 123350. https://doi.org/10.1016/j.energy.2022.123350
  • Comert, M., & Yildiz, A. (2022). A novel artificial neural network model for forecasting electricity demand enhanced with population weighted temperature mean and the unemployment rate. Turkish Journal of Engineering, 6(2), 178–189. https://doi.org/10.31127/tuj
  • Desai, S., Sabar, N. R., Alhadad, R., Mahmood, A., & Chilamkurti, N. (2022). Mitigating consumer privacy breach in smart grid using obfuscation-based generative adversarial network. Mathematical Biosciences and Engineering, 19(4), 3350–3368. https://doi.org/10.3934/mbe.2022155
  • Elahe, F., Jin, M., & Zeng, P. (2021). Review of load data analytics using deep learning in smart grids: Open load datasets, methodologies, and application challenges. International Journal of Energy Research, 45(10), 14274–14305. https://doi.org/10.1002/er.6745
  • Eniola, V., Suriwong, T., Sirisamphanwong, C., Ungchittrakool, K., & Fasipe, O. (2021). Validation of genetic algorithm optimized hidden markov model for short-term photovoltaic power prediction. International Journal of Renewable Energy Research, 11(2), 1–12.
  • Fan, Z., Kulkarni, P., Gormus, S., Efthymiou, C., Kalogridis, G., Sooriyabandara, M., Zhu, Z., Lambotharan, S., & Chin, W. H. (2013). Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Communications Surveys & Tutorials, 15(1), 21–38. https://doi.org/10.1109/SURV.2011.122211.00021
  • Farsi, B., Amayri, M., Bouguila, N., & Eicker, U. (2021). On short-term load forecasting using machine learning techniques and a novel parallel deep lstm-cnn approach. IEEE Access. 9, 31191–31212. https://doi.org/10.1109/ACCESS.2021.3060290
  • Foba, V. J., Boum, A. T., & Mbey, C. F. (2021). Optimal reliability of a smart grid. International Journal of Smart Grid, 5(2), 74–82.
  • Fujimoto, Y., Fujita, M., & Hayashi, Y. (2021). Deep reservoir architecture for short-term residential load forecasting: An online learning scheme for edge computing. Applied Energy, 298, 117176, 1–18. https://doi.org/10.1016/j.apenergy.2021.117176
  • Gaboitaolelwe, J., Zungeru, A. M., Yahya, A., Lebekwe, C. K., Vinod, D. N., & Salau, A. O. (2023). Machine learning based solar photovoltaic power forecasting: A review and comparison. IEEE Access. 11, 40820–40845. https://doi.org/10.1109/ACCESS.2023.3270041
  • Gupta, R., Yadav, A. K., Jha, S. K., & Pathak, P. K. (2022) Time Series Forecasting of Solar Power Generation Using Facebook Prophet and XG Boost .2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 1–5. https://doi.org/10.1109/DELCON54057.2022.9752916
  • Gupta, R., Yadav, A. K., Jha, S. K., & Pathak, P. K. (2023). Long Term estimation of global horizontal irradiance using machine learning algorithms. Optik, 283, 170873. https://doi.org/10.1016/j.ijleo.2023.170873
  • Hafeez, G., Alimgeer, K. S., & Khan, I. (2020). Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Applied Energy, 269, 114915. https://doi.org/10.1016/j.apenergy.2020.114915
  • Haihong, B., Qian, W., Guozheng, X., & Xiu, Z. (2022). Load forecasting of hybrid deep learning model considering accumulated temperature effect. Energy Reports, 8, 205–215. https://doi.org/10.1016/j.egyr.2021.11.082
  • Hong, Y., Zhou, Y., Li, Q., Xu, W., & Zheng, X. (2020). A deep learning method for short term residential load forecasting in smart grid. IEEE Access. 8, 55785–55797. https://doi.org/10.1109/ACCESS.2020.2981817
  • Jiandong, D., Peng, W., Wentao, M., Shuai, F., & Zequan, H. (2022). A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting. International Journal of Electrical Power and Energy Systems, 134(107452), 1–7. https://doi.org/10.1016/j.ijepes.2021.107452
  • Liang, F., Yu, W., Liu, X., Griffith, D., & Golmie, N. (2020). Toward edge based deep learning in industrial internet of things. IEEE Internet of Things Journal, 7(5), 4329–4341. https://doi.org/10.1109/JIOT.2019.2963635
  • Markovics, D., & Mayer, M. J. (2022). Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews, 161(1), 112364. https://doi.org/10.1016/j.rser.2022.112364
  • Martinez, D. R., Nigam, K. D. P., & Sandoval, L. A. R. (2021). Machine learning on sustainable energy: A reviewand outlook on renewable energy systems, catalysis, smart grid and energy storage. Chemical Engineering Research and Design, 174, 414–441. https://doi.org/10.1016/j.cherd.2021.08.013
  • Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., & Honkapuro, S. (2021). Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Applied Energy, 285, 116405. https://doi.org/10.1016/j.apenergy.2020.116405
  • Massaoudi, M., Abu-Rub, H., Refaat, S. S., Chihi, I., & Oueslati, F. S. (2021). Deep learning in smart grid technology: A review of recent advancements and future prospects. IEEE Access. 9(1), 54558–54578. https://doi.org/10.1109/ACCESS.2021.3071269
  • Mbey, C., Boum, A., & Nneme, L. N. (2022). Roadmap for the transformation of electrical distribution network of the city of douala into smart grid. International Journal of Energy Technology and Policy, 18(2), 146–162. https://doi.org/10.1504/IJETP.2022.10048991
  • Mbey, C. F., Foba Kakeu, V. J., Boum, A. T., & Yem Souhe, F. G. (2023). Fault detection and classification using deep learning method and neuro-fuzzy algorithm in a smart distribution grid. The Journal of Engineering, 2023(11), 1–19. https://doi.org/10.1049/tje2.12324
  • Melzi, F. N., Same, A., Zayani, M. H., & Oukhellou, L. (2017). A dedicated mixture model for clustering smart meter data: Identification and analysis of electricity consumption behaviors. Energies, 10(10), 1446. https://doi.org/10.3390/en10101446
  • Michael, N. E., Mishra, M., Hasan, S., & Durra, A. A. (2022). Short-term solar power predicting model based on multi-step cnn stacked lstm technique. Energies, 15(6), 2150. https://doi.org/10.3390/en15062150
  • Ozer, I., Efe, S. B., & Ozbay, H. (2021). A combined deep learning application for short term load forecasting. Alexandria Engineering Journal, 60(4), 3807–3818. https://doi.org/10.1016/j.aej.2021.02.050
  • Pekaslan, D., Wagner, C., Garibaldi, J. M., Marin, L. G., & Saez, D. (2020). Uncertainty-aware forecasting of renewable energy sources . IEEE International Conference on Big Data and Smart Computing (BigComp), 240–246. https://doi.org/10.1109/BigComp48618.2020.00-68
  • Rangelov, D., Boerger, M., Tcholtchev, N., Lämmel, P., & Hauswirth, M. (2023). Design and development of a short-term photovoltaic power output forecasting method based on Random Forest, Deep Neural Network and LSTM using readily available weather features. IEEE Access. 11, 41578–41595. https://doi.org/10.1109/ACCESS.2023.3270714
  • Ren, M., Liu, X., Yang, Z., Zhang, J., Guo, Y., & Jia, Y. (2021). A novel forecasting based scheduling method for household energy management system based on deep reinforcement learning. Sustainable Cities and Society, 76, 103207. https://doi.org/10.1016/j.scs.2021.103207
  • Rodríguez, F., Galarza, A., Vasquez, J. C., & Guerrero, J. M. (2022). Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. Energy, 239(1), 122116. https://doi.org/10.1016/j.energy.2021.122116
  • Salih, B. A., Wongthongtham, P., Morrison, G., Coutinho, K., Okaily, M., & Huneiti, A. (2022). Short-term renewable energy consumption and generation forecasting: A case study of Western Australia. Heliyon, 8(3), e09152. https://doi.org/10.1016/j.heliyon.2022.e09152
  • Selim, M., Zhou, R., Feng, W., & Quinsey, P. (2021). Estimating energy forecasting uncertainty for reliable ai autonomous smart grid design. Energies, 14(1), 247. https://doi.org/10.3390/en14010247
  • Sengan, S., Subramaniyaswamy, V., Indragandhi, V., Velayutham, P., & Ravi, L. (2021). Detection of false data cyber-attacks for the assessment of security in smart grid using deep learning. Computers & Electrical Engineering, 93, 107211. https://doi.org/10.1016/j.compeleceng.2021.107211
  • Shamshirband, S., Rabczuk, T., & Chau, K. W. (2019). A survey of deep learning techniques: Application in wind and solar energy resources. IEEE Access. 7(1), 164650–164666. https://doi.org/10.1109/ACCESS.2019.2951750
  • Shaqour, A., Ono, T., Hagishima, A., & Farzaneh, H. (2022). Electrical demand aggregation effects on the performance of deep learning-based short-term load forecasting of a residential building. Energy and AI, 8, 100141. https://doi.org/10.1016/j.egyai.2022.100141
  • Siniosoglou, I., Grammatikis, P. R., Efstathopoulos, G., Fouliras, P., & Sarigiannidis, P. (2021). A unified deep learning anomaly detection and classification approach for smart grid environments. IEEE Transactions on Network and Service Management, 18(2), 1137–1151. https://doi.org/10.1109/TNSM.2021.3078381
  • Souhe, F. G. Y., Boum, A. T., Ele, P., Mbey, C. F., Kakeu, & V., J. F. (2022). Fault detection, classification and location in power distribution smart grid using smart meters data. Journal of Applied Science and Engineering, 26(1), 23–34. https://doi.org/10.6180/jase.202301/26(1).0003
  • Souhe, F. Y., Boum, A. T., Ele, P., & Mbey, C. F. (2021). Roadmap for smart metering deployment in Cameroon. International Journal of Smart Grid, 5(1), 37–44.
  • Syed, D., Rub, H. A., Ghrayeb, A., Refaat, S. S., Houchati, M., Bouhali, O., & Banales, S. (2021a). Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access. 9(1), 54992–55008. https://doi.org/10.1109/ACCESS.2021.3071654
  • Syed, D., Zainab, A., Ghrayeb, A., Refaat, S. S., Abe-Rub, H., & Bouhali, O. (2021b). Smart grid big data analytics: Survey of technologies, techniques, and applications. IEEE Access. 9, 59564–59585. https://doi.org/10.1109/ACCESS.2020.3041178
  • Thilakarathne, N. N., Kagita, M. K., Lanka, S., & A., M. (2020). Smart grid: A survey of architectural elements, machine learning and deep learning applications and future directions. IEEE Access. 3(1), 32-42, https://doi.org/10.5281/zenodo.5202741
  • Wen, L., Zhou, K., & Yang, S. (2020). Load demand forecasting of residential buildings using a deep learning model. Electric Power Systems Research, 179(1), 106073. https://doi.org/10.1016/j.epsr.2019.106073
  • Wentz, V. H., Maciel, J. N., Ledesma, J. J. G., & Junior, O. H. A. (2022). Solar irradiance forecasting to short-term pv power: Accuracy comparison of ann and lstm models. Energies, 15(7), 2457. https://doi.org/10.3390/en15072457
  • Widodo, D A, Iksan, N, Udayanti, E D, Djuniadi, (2021). Renewable energy power generation forecasting using deep learning method. IOP Conference Series: Earth and Environmental Science, 1, 700,012026–. https://doi.org/10.1088/1755-1315/700/1/012026
  • Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid com-munication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys & Tutorials, 15(1), 5–20. https://doi.org/10.1109/SURV.2012.021312.00034
  • Yem, F. G., Boum, A. T., Ele, P., Mbey, C. F., Kakeu, F., & J, V. (2022). A novel smart method for state estimation in a smart grid using smart meter data. Applied Computational Intelligence and Soft Computing, 2022, 1–14. https://doi.org/10.1155/20227978263
  • Yem Souhe, F. G., Mbey, C. F., Boum, A. T., Ele, P., & Foba Kakeu, V. J. (2022). A hybrid model for forecasting the consumption of electrical energy in a smart grid. The Journal of Engineering, 2022(6), 629–643. https://doi.org/10.1049/tje2.12146
  • Zhang, D., Han, X., & Deng, C, (2018). Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE Journal of Power and Energy Systems, 4(3), 362–370. https://doi.org/10.17775/CSEEJPES.2018.00520
  • Zhang, W., Chen, Q., Yan, J., Zhang, S., & Xu, J. (2021). A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting. Energy, 236(1), 121492. https://doi.org/10.1016/j.energy.2021.121492
  • Zhao, Z., Tang, J., Liu, J., Ge, G., Xiong, B., & Li, Y. (2021 Short-term microgrid load probability density forecasting method based on k-means-deep learning quantile regression. In 2021 The 2nd International Conference on Power Engineering (ICPE 2021), Nanning, Guangxi, China, 8(1), 1386–1397. https://doi.org/10.1016/j.egyr.2022.03.117
  • Zieba, F. R., Gamzat, S., Bakary, H., Dadjé, A., Dumbrava, V., Makloufi, S., & Tchangnwa, F. N. (2021). Maximum power point tracking of photovoltaic energy systems based on multidirectional search optimization algorithm. International Journal of Renewable Energy Research, 11(2), 546–555.