347
Views
0
CrossRef citations to date
0
Altmetric
Electrical & Electronic Engineering

A state of the art review on energy management techniques and optimal sizing of DERs in grid-connected multi-microgrids

ORCID Icon, &
Article: 2340306 | Received 09 Jun 2023, Accepted 03 Apr 2024, Published online: 13 Apr 2024

References

  • Afrakhte, H., & Bayat, P. (2020). A self-evolving type-2 fuzzy energy management strategy for multi-microgrid systems. Computers & Electrical Engineering, 85, 106702. https://doi.org/10.1016/j.compeleceng.2020.106702
  • Aghdam, F. H., Ghaemi, S., & Kalantari, N. T. (2018). Evaluation of loss minimization on the energy management of multi-microgrid based smart distribution network in the presence of emission constraints and clean productions. Journal of Cleaner Production, 196, 185–201. https://doi.org/10.1016/j.jclepro.2018.06.023
  • Aghdam, F. H., Kalantari, N. T., & Mohammadi-Ivatloo, B. (2020). A chance-constrained energy management in multi-microgrid systems considering degradation cost of energy storage elements. Journal of Energy Storage, 29, 101416. https://doi.org/10.1016/j.est.2020.101416
  • Ahmadi, S. E., & Rezaei, N. (2020). A new isolated renewable based multi microgrid optimal energy management system considering uncertainty and demand response. International Journal of Electrical Power & Energy Systems, 118, 105760. https://doi.org/10.1016/j.ijepes.2019.105760
  • Ahmed, D., Ebeed, M., Ali, A., Alghamdi, A. S., & Kamel, S. (2021). Multi-objective energy management of a micro-grid considering stochastic nature of load and renewable energy resources. Electronics, 10(4), 403. https://doi.org/10.3390/electronics10040403
  • Alam, M. S., & Arefifar, S. A. (2019). Energy management in power distribution systems: Review, classification, limitations and challenges. IEEE Access. 7, 92979–93001. https://doi.org/10.1109/ACCESS.2019.2927303
  • Alamir, N., Kamel, S., Megahed, T. F., Hori, M., & Abdelkader, S. M. (2022). Energy management of multi-microgrid considering demand response using snake optimizer [Paper presentation]. 2022 23rd International Middle East Power Systems Conference (MEPCON) (pp. 1–6). IEEE. https://doi.org/10.1109/MEPCON55441.2022.10021750
  • Alhasnawi, B. N., & Jasim, B. H. (2020). A novel hierarchical energy management system based on optimization for multi-microgrid. International Journal on Electrical Engineering & Informatics, 12(3), 586–606. https://doi.org/10.15676/ijeei.2020.12.3.10
  • Ali, L., Muyeen, S., Bizhani, H., & Simoes, M. G. (2022). Economic planning and comparative analysis of market-driven multi-microgrid system for peer-to-peer energy trading. IEEE Transactions on Industry Applications, 58(3), 4025–4036. https://doi.org/10.1109/TIA.2022.3152140
  • Ali, S. A., Hussain, A., Haider, W., Rehman, H. U., & Kazmi, S. A. A. (2023). Optimal energy management system of isolated multi-microgrids with local energy transactive market with indigenous PV-, wind-, and biomass-based resources. Energies, 16(4), 1667. https://doi.org/10.3390/en16041667
  • Ali, S., Kazmi, S. A. A., Malik, M. M., Bhatti, A. H. U., Haseeb, M., Kazmi, S. M. R., & Shin, D. R. (2022). Energy management in high rer multi-microgrid system via energy trading and storage optimization. IEEE Access. 10, 6541–6554. https://doi.org/10.1109/ACCESS.2021.3132505
  • Alseyat, A., Ullah, M. H., & Park, J.-D. (2021). A plug-and-play-capable multi-agent network for distributed consensus-based operation in dc power systems [Paper presentation]. 2021 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 681–687). IEEE.https://doi.org/10.1109/ECCE47101.2021.9595141
  • Al-Shamma’a, A. A., Hussein Farh, H. M., Noman, A. M., Al-Shaalan, A. M., & Alkuhayli, A. (2022). Optimal sizing of a hybrid renewable photovoltaic-wind system-based microgrid using harris hawk optimizer. International Journal of Photoenergy, 2022, 1–13. https://doi.org/10.1155/2022/4825411
  • Amoussou, I., Tanyi, E., Ali, A., Agajie, T. F., Khan, B., Ballester, J. B., & Nsanyuy, W. B. (2023). Optimal modeling and feasibility analysis of grid-interfaced solar pv/wind/pumped hydro energy storage based hybrid system. Sustainability, 15(2), 1222. https://doi.org/10.3390/su15021222
  • Arefifar, S. A., Ordonez, M., & Mohamed, Y. A.-R I. (2016). Energy management in multi-microgrid systems—development and assessment. IEEE Transactions on Power Systems, 32(2), 1–1. https://doi.org/10.1109/TPWRS.2016.2568858
  • Asimakopoulou, G. E., Dimeas, A. L., & Hatziargyriou, N. D. (2013). Leader-follower strategies for energy management of multi-microgrids. IEEE Transactions on Smart Grid, 4(4), 1909–1916. https://doi.org/10.1109/TSG.2013.2256941
  • Babanezhaad Shirdar, H., & Ghafouri, A. (2022). Design of hybrid multilayer systems to improve energy management system in multi-microgrid systems in the presence of wind and solar power. Wind Engineering, 46(1), 34–51. https://doi.org/10.1177/0309524X211000379
  • Babanezhaad Shirdar, H., & Ghafouri, A. (2022). Optimization of multi-microgrid system operation cost with different energy management tools in the presence of energy storage system. Electric Power Components and Systems, 50(16–17), 951–971. https://doi.org/10.1080/15325008.2022.2143938
  • Babatunde, O. M., Munda, J. L., & Hamam, Y. (2019). A comprehensive state-of-the-art survey on power generation expansion planning with intermittent renewable energy source and energy storage. International Journal of Energy Research, 43(12), 6078–6107. https://doi.org/10.1002/er.4388
  • Babatunde, O. M., Munda, J. L., & Hamam, Y. (2020). A comprehensive state-of-the-art survey on hybrid renewable energy system operations and planning. IEEE Access. 8, 75313–75346. https://doi.org/10.1109/ACCESS.2020.2988397
  • Backhaus, S. N., Dobriansky, L., Glover, S., Liu, C.-C., Looney, P., Mashayekh, S., Pratt, A., Schneider, K., Stadler, M., Starke, M., et al. (2016). Networked microgrids scoping study. Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep.
  • Bagheri, Z., Doostizadeh, M., & Aminifar, F. (2021). A receding horizon data-driven chance-constrained approach for energy flexibility trading in multi-microgrid distribution network. IET Renewable Power Generation, 15(13), 2860–2877. https://doi.org/10.1049/rpg2.12215
  • Bandeiras, F., Pinheiro, E., Gomes, M., Coelho, P., & Fernandes, J. (2020). Review of the cooperation and operation of microgrid clusters. Renewable and Sustainable Energy Reviews, 133, 110311. https://doi.org/10.1016/j.rser.2020.110311
  • Battula, A. R., Vuddanti, S., & Salkuti, S. R. (2023). A day ahead demand schedule strategy for optimal operation of microgrid with uncertainty. Smart Cities, 6(1), 491–509. https://doi.org/10.3390/smartcities6010023
  • Bazmohammadi, N., Anvari-Moghaddam, A., Tahsiri, A., Madary, A., Vasquez, J. C., & Guerrero, J. M. (2020). Stochastic predictive energy management of multi-microgrid systems. Applied Sciences, 10(14), 4833. https://doi.org/10.3390/app10144833
  • Bazmohammadi, N., Tahsiri, A., Anvari-Moghaddam, A., & Guerrero, J. M. (2019). A hierarchical energy management strategy for interconnected microgrids considering uncertainty. International Journal of Electrical Power & Energy Systems, 109, 597–608. https://doi.org/10.1016/j.ijepes.2019.02.033
  • Brahmia, I., Wang, J., Xu, H., Wang, H., & Turci, L. D. O. (2021). Robust data predictive control framework for smart multi-microgrid energy dispatch considering electricity market uncertainty. IEEE Access. 9, 32390–32404. https://doi.org/10.1109/ACCESS.2021.3060315
  • Bukar, A. L., Tan, C. W., & Lau, K. Y. (2019). Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy, 188, 685–696. https://doi.org/10.1016/j.solener.2019.06.050
  • Bustos, R., Marín, L. G., Navas-Fonseca, A., Reyes-Chamorro, L., & Sáez, D. (2023). Hierarchical energy management system for multi-microgrid coordination with demand-side management. Applied Energy, 342, 121145. https://doi.org/10.1016/j.apenergy.2023.121145
  • Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S., & Kumar, P. (2020). Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Transactions on Fuzzy Systems, 28(11), 2702–2710. https://doi.org/10.1109/TFUZZ.2020.3026140
  • Castellanos, J., Correa-Flórez, C. A., Garcés, A., Ordóñez-Plata, G., Uribe, C. A., & Patino, D. (2023). An energy management system model with power quality constraints for unbalanced multi-microgrids interacting in a local energy market. Applied Energy, 343, 121149. https://doi.org/10.1016/j.apenergy.2023.121149
  • Ceja-Espinosa, C., Pirnia, M., & Cañizares, C. A. (2022). A privacy-preserving energy management system for cooperative multi-microgrid networks. arXiv preprint arXiv:2207.04359.
  • Chen, S. X., Gooi, H. B., & Wang, M. (2012). Sizing of energy storage for microgrids. IEEE Transactions on Smart Grid, 3(1), 142–151. https://doi.org/10.1109/TSG.2011.2160745
  • Choobineh, M., & Mohagheghi, S. (2019). Robust optimal energy pricing and dispatch for a multi-microgrid industrial park operating based on just-in-time strategy. IEEE Transactions on Industry Applications, 55(4), 3321–3330. https://doi.org/10.1109/TIA.2019.2903182
  • Copp, D. A., Nguyen, T. A., Byrne, R. H., & Chalamala, B. R. (2022). Optimal sizing of distributed energy resources for planning 100% renewable electric power systems. Energy, 239, 122436. https://doi.org/10.1016/j.energy.2021.122436
  • Dey, B., Basak, S., & Bhattacharyya, B. (2023). Demand-side-management-based bi-level intelligent optimal approach for cost-centric energy management of a microgrid system. Arabian Journal for Science and Engineering, 48(5), 6819–6830. https://doi.org/10.1007/s13369-022-07546-2
  • Dey, B., Misra, S., & Marquez, F. P. G. (2023). Microgrid system energy management with demand response program for clean and economical operation. Applied Energy, 334, 120717. https://doi.org/10.1016/j.apenergy.2023.120717
  • Du, Y., & Li, F. (2020). Intelligent multi-microgrid energy management based on deep neural network and model-free reinforcement learning. IEEE Transactions on Smart Grid, 11(2), 1066–1076. https://doi.org/10.1109/TSG.2019.2930299
  • Du, Y., Wang, Z., Liu, G., Chen, X., Yuan, H., Wei, Y., & Li, F. (2018). A cooperative game approach for coordinating multi-microgrid operation within distribution systems. Applied Energy, 222, 383–395. https://doi.org/10.1016/j.apenergy.2018.03.086
  • Ediriweera, W. S., & Lidula, N. (2022). Design and protection of microgrid clusters: A comprehensive review. AIMS Energy, 10(3), 375–411. https://doi.org/10.3934/energy.2022020
  • El-Hendawi, M., Gabbar, H. A., El-Saady, G., & Ibrahim, E.-N A. (2018). Control and ems of a grid-connected microgrid with economical analysis. Energies, 11(1), 129. https://doi.org/10.3390/en11010129
  • Elkazaz, M., Sumner, M., & Thomas, D. (2020). Energy management system for hybrid pv-wind-battery microgrid using convex programming, model predictive and rolling horizon predictive control with experimental validation. International Journal of Electrical Power & Energy Systems, 115, 105483. https://doi.org/10.1016/j.ijepes.2019.105483
  • Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews, 48, 413–424. https://doi.org/10.1016/j.rser.2015.04.025
  • Gamil, M. M., Senjyu, T., Takahashi, H., Hemeida, A. M., Krishna, N., & Lotfy, M. E. (2021). Optimal multi-objective sizing of a residential microgrid in Egypt with different tou demand response percentages. Sustainable Cities and Society, 75, 103293. https://doi.org/10.1016/j.scs.2021.103293
  • Gao, J., Li, Y., Wang, B., & Wu, H. (2023). Multi-microgrid collaborative optimization scheduling using an improved multi-agent soft actor-critic algorithm. Energies, 16(7), 3248. https://doi.org/10.3390/en16073248
  • García Vera, Y. E., Dufo-López, R., & Bernal-Agustín, J. L. (2019). Energy management in microgrids with renewable energy sources: A literature review. Applied Sciences, 9(18), 3854. https://doi.org/10.3390/app9183854
  • Ge, L., Song, Z., Xu, X., Bai, X., & Yan, J. (2021). Dynamic networking of islanded regional multi-microgrid networks based on graph theory and multi-objective evolutionary optimization. International Transactions on Electrical Energy Systems, 31(1), e12687. https://doi.org/10.1002/2050-7038.12687
  • Ghaemi, S., Salehi, J., & Hamzeh Aghdam, F. (2019). Risk aversion energy management in the networked microgrids with presence of renewable generation using decentralised optimisation approach. IET Renewable Power Generation, 13(7), 1050–1061. https://doi.org/10.1049/iet-rpg.2018.5573
  • Ghiasi, M. (2019). Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy, 169, 496–507. https://doi.org/10.1016/j.energy.2018.12.083
  • Gong, C., Zeng, S., Li, X., Chen, P., Ding, Y., Liu, C., & Jiang, L. (2022). A brief view on energy management of multi-microgrid systems: Framework, communication technologies, and dispatching strategies [Paper presentation]. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE) (pp. 677–683). IEEE. https://doi.org/10.1109/ACPEE53904.2022.9783998
  • Guo, C., Wang, X., Zheng, Y., & Zhang, F. (2021). Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning. International Journal of Electrical Power & Energy Systems, 131, 107048. https://doi.org/10.1016/j.ijepes.2021.107048
  • Guo, G., & Gong, Y. (2023). Multi-microgrid energy management strategy based on multi-agent deep reinforcement learning with prioritized experience replay. Applied Sciences, 13(5), 2865. https://doi.org/10.3390/app13052865
  • Haddadian, H., & Noroozian, R. (2019). Multi-microgrid-based operation of active distribution networks considering demand response programs. IEEE Transactions on Sustainable Energy, 10(4), 1804–1812. https://doi.org/10.1109/TSTE.2018.2873206
  • Hao, R., Ai, Q., Liu, Y., Xiong, W., Wang, L., Yu, Z., Zhang, Z., & Zhang, Y. (2020). Distributed interactive energy management for networked microgrids based on nested architecture [Paper presentation]. 2020 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1–5). IEEE. https://doi.org/10.1109/PESGM41954.2020.9281756
  • Harmouch, F. Z., Krami, N., & Hmina, N. (2018). A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster. Sustainable Cities and Society, 40, 416–427. https://doi.org/10.1016/j.scs.2018.04.001
  • Haseeb, M., Kazmi, S. A. A., Malik, M. M., Ali, S., Bukhari, S. B. A., & Shin, D. R. (2020). Multi objective based framework for energy management of smart micro-grid. IEEE Access. 8, 220302–220319. https://doi.org/10.1109/ACCESS.2020.3041473
  • Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified pso algorithm for real-time energy management in grid-connected microgrids. Renewable Energy. 136, 746–757. https://doi.org/10.1016/j.renene.2019.01.005
  • Hu, K-y., Li, W-j., Wang, L-d., Cao, S-h., Zhu, F-m., & Shou, Z-x (2018). Energy management for multi-microgrid system based on model predictive control. Frontiers of Information Technology & Electronic Engineering, 19(11), 1340–1351. https://doi.org/10.1631/FITEE.1601826
  • Hussain, A., Bui, V.-H., & Kim, H.-M. (2018). A resilient and privacy-preserving energy management strategy for networked microgrids. IEEE Transactions on Smart Grid, 9(3), 2127–2139. https://doi.org/10.1109/TSG.2016.2607422
  • Islam, M. M., Nagrial, M., Rizk, J., & Hellany, A. (2021). General aspects, islanding detection, and energy management in microgrids: A review. Sustainability, 13(16), 9301. https://doi.org/10.3390/su13169301
  • Jafari, A., Ganjehlou, H. G., Khalili, T., & Bidram, A. (2020). A fair electricity market strategy for energy management and reliability enhancement of islanded multi-microgrids. Applied Energy, 270, 115170. https://doi.org/10.1016/j.apenergy.2020.115170
  • Jain, R., & Mahajan, V. (2022). Energy management of multi-microgrids in joint energy and ancillary service market considering uncertainties of renewables. Journal of Renewable Energy and Environment, 10(2), 95–107. https://doi.org/10.30501/jree.2022.329343.1334
  • Javidsharifi, M., Pourroshanfekr Arabani, H., Kerekes, T., Sera, D., & Guerrero, J. M. (2022). Stochastic optimal strategy for power management in interconnected multi-microgrid systems. Electronics, 11(9), 1424. https://doi.org/10.3390/electronics11091424
  • Kampelis, N., Tsekeri, E., Kolokotsa, D., Kalaitzakis, K., Isidori, D., & Cristalli, C. (2018). Development of demand response energy management optimization at building and district levels using genetic algorithm and artificial neural network modelling power predictions. Energies, 11(11), 3012. https://doi.org/10.3390/en11113012
  • Karimi, H., Bahmani, R., Jadid, S., & Makui, A. (2021). Dynamic transactive energy in multi-microgrid systems considering independence performance index: A multi-objective optimization framework. International Journal of Electrical Power & Energy Systems, 126, 106563. https://doi.org/10.1016/j.ijepes.2020.106563
  • Karimi, H., Gharehpetian, G., Ahmadiahangar, R., & Rosin, A. (2023). Optimal energy management of grid-connected multi-microgrid systems considering demand-side flexibility: A two-stage multi-objective approach. Electric Power Systems Research, 214, 108902. https://doi.org/10.1016/j.epsr.2022.108902
  • Karimi, H., Jadid, S., & Makui, A. (2021). Stochastic energy scheduling of multi-microgrid systems considering independence performance index and energy storage systems. Journal of Energy Storage, 33, 102083. https://doi.org/10.1016/j.est.2020.102083
  • Keshta, H., Ali, A., Saied, E., & Bendary, F. (2019). Real-time operation of multi-micro-grids using a multi-agent system. Energy, 174, 576–590. https://doi.org/10.1016/j.energy.2019.02.145
  • Köbrich, D., Marín, L. G., Muñoz‐Carpintero, D., Ahumada, C., Sáez, D., Sumner, M., & Jiménez‐Estévez, G. (2022). A robust distributed energy management system for the coordinated operation of rural multi-microgrids. International Journal of Energy Research, 46(14), 19775–19795. https://doi.org/10.1002/er.8502
  • Kulasekera, A., Gopura, R., Hemapala, K., & Perera, N. (2011). A review on multi-agent systems in microgrid applications. ISGT2011-India (pp. 173–177).
  • Kumar, A., Sharma, S., & Verma, A. (2020). Optimal sizing and multi-energy management strategy for pv-biofuel-based off-grid systems. IET Smart Grid. 3(1), 83–97. https://doi.org/10.1049/iet-stg.2019.0178
  • Kumar, M., & Tyagi, B. (2020). An optimal multivariable constrained nonlinear (mvcnl) stochastic microgrid planning and operation problem with renewable penetration. IEEE Systems Journal, 14(3), 4143–4154. https://doi.org/10.1109/JSYST.2019.2963729
  • Li, B., Roche, R., & Miraoui, A. (2017). Microgrid sizing with combined evolutionary algorithm and milp unit commitment. Applied Energy, 188, 547–562. https://doi.org/10.1016/j.apenergy.2016.12.038
  • Li, C., Jia, X., Zhou, Y., & Li, X. (2020). A microgrids energy management model based on multi-agent system using adaptive weight and chaotic search particle swarm optimization considering demand response. Journal of Cleaner Production, 262, 121247. https://doi.org/10.1016/j.jclepro.2020.121247
  • Li, Y., Han, M., Yang, Z., & Li, G. (2021). Coordinating flexible demand response and renewable uncertainties for scheduling of community integrated energy systems with an electric vehicle charging station: A bi-level approach. IEEE Transactions on Sustainable Energy, 12(4), 2321–2331. https://doi.org/10.1109/TSTE.2021.3090463
  • Li, Y., He, S., Li, Y., Shi, Y., & Zeng, Z. (2023). Federated multiagent deep reinforcement learning approach via physics-informed reward for multimicrogrid energy management. IEEE Transactions on Neural Networks and Learning Systems, 1–13. https://doi.org/10.1109/TNNLS.2022.3232630
  • Li, Y., Yang, Z., Li, G., Zhao, D., & Tian, W. (2019). Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties. IEEE Transactions on Industrial Electronics, 66(2), 1565–1575. https://doi.org/10.1109/TIE.2018.2840498
  • Lin, Y., Bie, Z., & Qiu, A. (2018). A review of key strategies in realizing power system resilience. Global Energy Interconnection, 1(1), 70–78.
  • Liu, Y., Gooi, H. B., & Xin, H. (2017). Distributed energy management for the multi-microgrid system based on admm. 2017 IEEE Power & Energy Society General Meeting (pp. 1–5). IEEE.
  • Liu, Z., Gao, J., Yu, H., & Wang, X. (2020). Operation mechanism and strategies for transactive electricity market with multi-microgrid in grid-connected mode. IEEE Access. 8, 79594–79603. https://doi.org/10.1109/ACCESS.2020.2990297
  • Luo, S., & Guo, X. (2023). Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 19(2), 823–851. https://doi.org/10.3934/jimo.2021208
  • Mahmoud, F. S., Abdelhamid, A. M., Al Sumaiti, A., El-Sayed, A.-H M., & Diab, A. A. Z. (2022). Sizing and design of a pv-wind-fuel cell storage system integrated into a grid considering the uncertainty of load demand using the marine predators algorithm. Mathematics, 10(19), 3708. https://doi.org/10.3390/math10193708
  • Mahmoud, I., Omran, W. A., & Hasanien, H. (2021). Day-ahead scheduling for grid connected multi-microgrids via hierarchical energy management strategy [Paper presentation]. 2021 22nd International Middle East Power Systems Conference (MEPCON) (pp. 58–64). IEEE. https://doi.org/10.1109/MEPCON50283.2021.9686224
  • Mansour-Saatloo, A., Pezhmani, Y., Mirzaei, M. A., Mohammadi-Ivatloo, B., Zare, K., Marzband, M., & Anvari-Moghaddam, A. (2021). Robust decentralized optimization of multi-microgrids integrated with power-to-x technologies. Applied Energy, 304, 117635. https://doi.org/10.1016/j.apenergy.2021.117635
  • Mao, M., Wang, Y., Chang, L., & Du, Y. (2017). Operation optimization for multi-microgrids based on centralized-decentralized hybrid hierarchical energy management [Paper presentation]. 2017 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 4813–4820). IEEE. https://doi.org/10.1109/ECCE.2017.8096818
  • Mazidi, M., Rezaei, N., Ardakani, F. J., Mohiti, M., & Guerrero, J. M. (2020). A hierarchical energy management system for islanded multi-microgrid clusters considering frequency security constraints. International Journal of Electrical Power & Energy Systems, 121, 106134. https://doi.org/10.1016/j.ijepes.2020.106134
  • Mehraban, S. A., & Eslami, R. (2023). Multi-microgrids energy management in power transmission mode considering different uncertainties. Electric Power Systems Research, 216, 109071. https://doi.org/10.1016/j.epsr.2022.109071
  • Mirbarati, S. H., Heidari, N., Nikoofard, A., Danish, M. S. S., & Khosravy, M. (2022). Techno-economic-environmental energy management of a micro-grid: A mixed-integer linear programming approach. Sustainability, 14(22), 15036. https://doi.org/10.3390/su142215036
  • Moghimi, M., Jamborsalamati, P., Hossain, J., Stegen, S., & Lu, J. (2018). A hybrid communication platform for multi-microgrid energy management system optimization [Paper presentation]. 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE) (pp. 1215–1220). IEEE. https://doi.org/10.1109/ISIE.2018.8433861
  • Mohamed, M. A., Hajjiah, A., Alnowibet, K. A., Alrasheedi, A. F., Awwad, E. M., & Muyeen, S. (2021). A secured advanced management architecture in peer-to-peer energy trading for multi-microgrid in the stochastic environment. IEEE Access. 9, 92083–92100. https://doi.org/10.1109/ACCESS.2021.3092834
  • Muqeet, H. A., Javed, H., Akhter, M. N., Shahzad, M., Munir, H. M., Nadeem, M. U., Bukhari, S. S. H., & Huba, M. (2022). Sustainable solutions for advanced energy management system of campus microgrids: Model opportunities and future challenges. Sensors, 22(6), 2345. https://doi.org/10.3390/s22062345
  • Naderi, M., Khayat, Y., Shafiee, Q., Blaabjerg, F., & Bevrani, H. (2023). Dynamic modeling, stability analysis and control of interconnected microgrids: A review. Applied Energy, 334, 120647. https://doi.org/10.1016/j.apenergy.2023.120647
  • Nawaz, A., Wu, J., Ye, J., Dong, Y., & Long, C. (2023). Distributed mpc-based energy scheduling for islanded multi-microgrid considering battery degradation and cyclic life deterioration. Applied Energy, 329, 120168. https://doi.org/10.1016/j.apenergy.2022.120168
  • Nawaz, A., Zhou, M., Wu, J., & Long, C. (2022). A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network. Applied Energy, 323, 119596. https://doi.org/10.1016/j.apenergy.2022.119596
  • Nikmehr, N., & Ravadanegh, S. N. (2015). Optimal power dispatch of multi-microgrids at future smart distribution grids. IEEE Transactions on Smart Grid, 6(4), 1648–1657. https://doi.org/10.1109/TSG.2015.2396992
  • Okhuegbe, S., Mwaniki, C., & Akorede, M. (2022). Optimal sizing of hybrid energy systems in a microgrid: A review. In Proceedings of the Sustainable Research and Innovation Conference (pp. 88–100).
  • Ouammi, A., Dagdougui, H., Dessaint, L., & Sacile, R. (2015). Coordinated model predictive-based power flows control in a cooperative network of smart microgrids. IEEE Transactions on Smart Grid, 6(5), 2233–2244. https://doi.org/10.1109/TSG.2015.2396294
  • Ouramdane, O., Elbouchikhi, E., Amirat, Y., & Sedgh Gooya, E. (2021). Optimal sizing and energy management of microgrids with vehicle-to-grid technology: a critical review and future trends. Energies, 14(14), 4166. https://doi.org/10.3390/en14144166
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery (London, England), 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906
  • Pisei, S., Choi, J.-Y., Lee, W.-P., & Won, D.-J. (2017). Optimal power scheduling in multi-microgrid system using particle swarm optimization. Journal of Electrical Engineering and Technology, 12(4), 1329–1339.
  • Qiu, H., & You, F. (2020). Decentralized-distributed robust electric power scheduling for multi-microgrid systems. Applied Energy, 269, 115146. https://doi.org/10.1016/j.apenergy.2020.115146
  • Rajagopalan, A., Nagarajan, K., Montoya, O. D., Dhanasekaran, S., Kareem, I. A., Perumal, A. S., Lakshmaiya, N., & Paramasivam, P. (2022). Multi-objective optimal scheduling of a microgrid using oppositional gradient-based grey wolf optimizer. Energies, 15(23), 9024. https://doi.org/10.3390/en15239024
  • Ramli, M. A., Bouchekara, H., & Alghamdi, A. S. (2018). Optimal sizing of pv/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable Energy. 121, 400–411. https://doi.org/10.1016/j.renene.2018.01.058
  • Roy, A., Auger, F., Olivier, J.-C., Schaeffer, E., & Auvity, B. (2020). Design, sizing, and energy management of microgrids in harbor areas: a review. Energies, 13(20), 5314. https://doi.org/10.3390/en13205314
  • Saha, D., Bazmohammadi, N., Vasquez, J. C., & Guerrero, J. M. (2023). Multiple microgrids: A review of architectures and operation and control strategies. Energies, 16(2), 600. https://doi.org/10.3390/en16020600
  • Samuel, O., Javaid, N., Khalid, A., Khan, W. Z., Aalsalem, M. Y., Afzal, M. K., & Kim, B.-S. (2020). Towards real-time energy management of multi-microgrid using a deep convolution neural network and cooperative game approach. IEEE Access. 8, 161377–161395. https://doi.org/10.1109/ACCESS.2020.3021613
  • Sandgani, M. R., & Sirouspour, S. (2018). Priority-based microgrid energy management in a network environment. IEEE Transactions on Sustainable Energy, 9(2), 980–990. https://doi.org/10.1109/TSTE.2017.2769558
  • Seyednouri, S. R., Safari, A., Farrokhifar, M., Ravadanegh, S. N., Quteishat, A., & Younis, M. (2023). Day-ahead scheduling of multi-energy microgrids based on a stochastic multi-objective optimization model. Energies, 16(4), 1802. https://doi.org/10.3390/en16041802
  • Sheikhahmadi, P., Bahramara, S., Shahrokhi, S., Chicco, G., Mazza, A., & Catalão, J. P. (2020). Modeling local energy market for energy management of multi-microgrids [Paper presentation].2020 55th International Universities Power Engineering Conference (UPEC) (pp. 1–6). IEEE. https://doi.org/10.1109/UPEC49904.2020.9209891
  • Spiegel, M. H., Veith, E. M., & Strasser, T. I. (2020). The spectrum of proactive, resilient multi-microgrid scheduling: A systematic literature review. Energies, 13(17), 4543. https://doi.org/10.3390/en13174543
  • Sun, Y., Cai, Z., Zhang, Z., Guo, C., Ma, G., & Han, Y. (2020). Coordinated energy scheduling of a distributed multi-microgrid system based on multi-agent decisions. Energies, 13(16), 4077. https://doi.org/10.3390/en13164077
  • Tan, B., & Chen, H. (2020). Multi-objective energy management of multiple microgrids under random electric vehicle charging. Energy, 208, 118360. https://doi.org/10.1016/j.energy.2020.118360
  • Tan, B., Chen, H., Zheng, X., & Huang, J. (2022). Two-stage robust optimization dispatch for multiple microgrids with electric vehicle loads based on a novel data-driven uncertainty set. International Journal of Electrical Power & Energy Systems, 134, 107359. https://doi.org/10.1016/j.ijepes.2021.107359
  • Tian, P., Xiao, X., Wang, K., & Ding, R. (2016). A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation. IEEE Transactions on Smart Grid, 7(5), 2230–2241. https://doi.org/10.1109/TSG.2015.2470551
  • Vaka, S. S. K. R., & Matam, S. K. (2021). Optimal sizing and management of battery energy storage systems in microgrids for operating cost minimization. Electric Power Components and Systems, 49(16–17), 1319–1332. https://doi.org/10.1080/15325008.2022.2061641
  • Villanueva-Rosario, J. A., Santos-García, F., Aybar-Mejía, M. E., Mendoza-Araya, P., & Molina-García, A. (2022). Coordinated ancillary services, market participation and communication of multi-microgrids: A review. Applied Energy, 308, 118332. https://doi.org/10.1016/j.apenergy.2021.118332
  • Wang, X., Wang, C., Xu, T., Guo, L., Li, P., Yu, L., & Meng, H. (2018). Optimal voltage regulation for distribution networks with multi-microgrids. Applied Energy, 210, 1027–1036. https://doi.org/10.1016/j.apenergy.2017.08.113
  • Waqar, A., Nawaz, M. S., Aamir, M., Alam, I., Ali, S. U., & Ahmad, J. (2019). Multi-objective analysis of der sizing in microgrids using probabilistic modeling [Paper presentation]. 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1–6). IEEE. https://doi.org/10.1109/ICECCE47252.2019.8940702
  • Wu, D., Ma, X., Huang, S., Fu, T., & Balducci, P. (2020). Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient microgrid. Energy, 198, 117284. https://doi.org/10.1016/j.energy.2020.117284
  • Wu, Q., Xie, Z., Li, Q., Ren, H., & Yang, Y. (2022). Economic optimization method of multi-stakeholder in a multi-microgrid system based on stackelberg game theory. Energy Reports, 8, 345–351. https://doi.org/10.1016/j.egyr.2021.11.148
  • Wynn, S. L. L., Pinthurat, W., & Marungsri, B. (2022). Multi-objective optimization for peak shaving with demand response under renewable generation uncertainty. Energies, 15(23), 8989. https://doi.org/10.3390/en15238989
  • Xie, H., Teng, X., Xu, Y., & Wang, Y. (2019). Optimal energy storage sizing for networked microgrids considering reliability and resilience. IEEE Access. 7, 86336–86348. https://doi.org/10.1109/ACCESS.2019.2922994
  • Xie, M., Ji, X., Hu, X., Cheng, P., Du, Y., & Liu, M. (2018). Autonomous optimized economic dispatch of active distribution system with multi-microgrids. Energy, 153, 479–489. https://doi.org/10.1016/j.energy.2018.04.021
  • Yang, J., & Su, C. (2021). Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy, 223, 120043. https://doi.org/10.1016/j.energy.2021.120043
  • Yang, X., He, H., Zhang, Y., Chen, Y., & Weng, G. (2019). Interactive energy management for enhancing power balances in multi-microgrids. IEEE Transactions on Smart Grid, 10(6), 6055–6069. https://doi.org/10.1109/TSG.2019.2896182
  • Yu, Y., Li, G., & Li, Z. (2020). A game theoretical pricing mechanism for multi-microgrid energy trading considering electric vehicles uncertainty. IEEE Access. 8, 156519–156529. https://doi.org/10.1109/ACCESS.2020.3019815
  • Zeinal-Kheiri, S., Shotorbani, A. M., & Mohammadi-Ivatloo, B. (2020). Real-time energy management of grid-connected microgrid with flexible and delay-tolerant loads. Journal of Modern Power Systems and Clean Energy, 8(6), 1196–1207. https://doi.org/10.35833/MPCE.2018.000615
  • Zhang, B., Li, Q., Wang, L., & Feng, W. (2018). Robust optimization for energy transactions in multi-microgrids under uncertainty. Applied Energy, 217, 346–360. https://doi.org/10.1016/j.apenergy.2018.02.121
  • Zhang, Y., Lv, Y., & Zhou, Y. (2023). Research on economic optimal dispatching of microgrid based on an improved bacteria foraging optimization. Biomimetics, 8(2), 150. https://doi.org/10.3390/biomimetics8020150
  • Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., & Wang, C. (2014). Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy, 113, 1656–1666. https://doi.org/10.1016/j.apenergy.2013.09.015
  • Zhao, J., Li, F., Mukherjee, S., & Sticht, C. (2022). Deep reinforcement learning-based model-free on-line dynamic multi-microgrid formation to enhance resilience. IEEE Transactions on Smart Grid, 13(4), 2557–2567. https://doi.org/10.1109/TSG.2022.3160387
  • Zhong, X., Zhong, W., Liu, Y., Yang, C., & Xie, S. (2022). Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations. Energy, 246, 123428. https://doi.org/10.1016/j.energy.2022.123428
  • Zhou, B., Zou, J., Chung, C. Y., Wang, H., Liu, N., Voropai, N., & Xu, D. (2021). Multi-microgrid energy management systems: Architecture, communication, and scheduling strategies. Journal of Modern Power Systems and Clean Energy, 9(3), 463–476. https://doi.org/10.35833/MPCE.2019.000237
  • Zhou, H., & Erol-Kantarci, M. (2020). Decentralized microgrid energy management: A multi-agent correlated q-learning approach [Paper presentation]. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1–7). IEEE. https://doi.org/10.1109/SmartGridComm47815.2020.9302992
  • Zhou, X., Ai, Q., & Yousif, M. (2019). Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids. Applied Energy, 253, 113588. https://doi.org/10.1016/j.apenergy.2019.113588
  • Zhu, W., Guo, J., Zhao, G., & Zeng, B. (2020). Optimal sizing of an island hybrid microgrid based on improved multi-objective grey wolf optimizer. Processes, 8(12), 1581. https://doi.org/10.3390/pr8121581
  • Zia, M. F., Elbouchikhi, E., & Benbouzid, M. (2018). Microgrids energy management systems: A critical review on methods, solutions, and prospects. Applied Energy, 222, 1033–1055. https://doi.org/10.1016/j.apenergy.2018.04.103
  • Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., & Cheng, L. (2019). A survey of energy management in interconnected multi-microgrids. IEEE Access. 7, 72158–72169. https://doi.org/10.1109/ACCESS.2019.2920008
  • Zubidi, A. N., Ismail, B., Al Hamrounni, I. M. A., Rahman, N. H. A., & Mohd Rozlan, M. H. H. (2023). The impact of integrating multi-microgrid system with facts devices for voltage profile enhancement and real power loss reduction in power system: A review. Pertanika Journal of Science & Technology, 31(2), 633–654. https://doi.org/10.47836/pjst.31.2.01.