251
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Effects of modified sugar cane and plantain pseudo-stem fibers for oil spill remediation

, , , , ORCID Icon &
Article: 2342442 | Received 03 Jan 2024, Accepted 08 Apr 2024, Published online: 03 May 2024

References

  • Abidli, A., Huang, Y., Cherukupally, P., Bilton, A. M., & Park, C. B. (2020). Novel separator skimmer for oil spill cleanup and oily wastewater treatment: From conceptual system design to the first pilot-scale prototype development. Environmental Technology & Innovation, 18, 100598. https://doi.org/10.1016/j.eti.2019.100598
  • Adofo, Y. K., Nyankson, E., & Agyei-Tuffour, B. (2022). Dispersants as an oil spill clean-up technique in the marine environment: A review. Heliyon, 8(8), e10153. https://doi.org/10.1016/j.heliyon.2022.e10153
  • Agyei-Tuffour, B., Gbogbo, S., Dodoo-Arhin, D., Damoah, L. N. W., Efavi, J. K., Yaya, A., & Nyankson, E. (2020). Photocatalytic degradation of fractionated crude oil: potential application in oil spill remediation. Cogent Engineering, 7(1), 1744944. https://doi.org/10.1080/23311916.2020.1744944
  • Ahmad, F., Choi, H. S., & Park, M. K. (2015). A review: natural fiber composites selection given mechanical, lightweight, and economic properties. Macromolecular Materials and Engineering, 300(1), 10–24. https://doi.org/10.1002/mame.201400089
  • Ahmad, S., Wong, Y. C., & Veloo, K. V. (2018 Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution [Paper presentation]. IOP Conference Series: Earth and Environmental Science, 140, 012027. https://doi.org/10.1088/1755-1315/140/1/012027
  • Andrijanto, E., Shoelarta, S., Subiyanto, G., & Rifki, S. (2016 Facile synthesis of graphene from graphite using ascorbic acid as a reducing agent [Paper presentation]. AIP Conference Proceedings, 1725(1).
  • Angelova, D., Uzunov, I., Uzunova, S., Gigova, A., & Minchev, L. (2011). Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 172(1), 306–311. https://doi.org/10.1016/j.cej.2011.05.114
  • Annunciado, T. R., Sydenstricker, T. H. D., & Amico, S. C. (2005). Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Marine Pollution Bulletin, 50(11), 1340–1346. https://doi.org/10.1016/j.marpolbul.2005.04.043
  • Aravindh, M., Sathish, S., Ranga Raj, R., Karthick, A., Mohanavel, V., Patil, P. P., Muhibbullah, M., & Osman, S. M. (2022). A review of the effect of various chemical treatments on the mechanical properties of renewable fiber-reinforced composites. Advances in Materials Science and Engineering, 2022, 1–24. https://doi.org/10.1155/2022/2009691
  • Asim, M., Paridah, M. T., Chandrasekar, M., Shahroze, R. M., Jawaid, M., Nasir, M., & Siakeng, R. (2020). Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal, 29(7), 625–648. https://doi.org/10.1007/s13726-020-00824-6
  • Bae, E., & Choi, W. (2003). Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. Environmental Science & Technology, 37(1), 147–152. https://doi.org/10.1021/es025617q
  • Baig, M. I., Ingole, P. G., Jeon, J., Hong, S. U., Choi, W. K., & Lee, H. K. (2019). Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chemical Engineering Journal, 373, 1190–1202. https://doi.org/10.1016/j.cej.2019.05.122
  • Bayraktaroglu, S., Kizil, S., & Sonmez, H. B. (2021). A highly reusable polydimethylsiloxane sorbents for oil/organic solvent clean-up from water. Journal of Environmental Chemical Engineering, 9(5), 106002. https://doi.org/10.1016/j.jece.2021.106002
  • Bazargan, A., Tan, J., & McKay, G. (2015). Standardization of oil sorbent performance testing. Journal of Testing and Evaluation, 43(6), 1271–1278. https://doi.org/10.1520/JTE20140227
  • Ben Hammouda, S., Chen, Z., An, C., & Lee, K. (2021). Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. Journal of Cleaner Production, 311, 127630. https://doi.org/10.1016/j.jclepro.2021.127630
  • Bhardwaj, N., & Bhaskarwar, A. N. (2018). A review on sorbent devices for oil spill control. Environmental Pollution, 243, 1758–1771. https://doi.org/10.1016/j.envpol.2018.09.141
  • Chang, J., Shi, Y., Wu, M., Li, R., Shi, L., Jin, Y., Qing, W., Tang, C., & Wang, P. (2018). Solar-assisted fast cleanup of heavy oil spills using a photothermal sponge. Journal of Materials Chemistry A, 6(19), 9192–9199. https://doi.org/10.1039/C8TA00779A
  • Chen, Z., Li, F., Hao, L., Chen, A., & Kong, Y. (2011). One-step electrodeposition process to fabricate cathodic superhydrophobic surface. Applied Surface Science, 258(4), 1395–1398. https://doi.org/10.1016/j.apsusc.2011.09.086
  • Choi, S.-S., Chu, B., Lee, S. G., Lee, S. W., Im, S. S., Kim, S. H., & Park, J. K. (2004). Titania-doped silica fibers are prepared by electrospinning and sol-gel process. Journal of Sol-Gel Science and Technology, 30(3), 215–221. https://doi.org/10.1023/B:JSST.0000039530.09380.bc
  • Chu, Z., Feng, Y., & Seeger, S. (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8), 2328–2338. https://doi.org/10.1002/anie.201405785
  • Cote, L. J., Kim, J., Tung, V. C., Luo, J., Kim, F., & Huang, J. (2010). Graphene oxide as surfactant sheets. Pure and Applied Chemistry, 83(1), 95–110. https://doi.org/10.1351/PAC-CON-10-10-25
  • Danso, H. (2021). Effect of plantain pseudostem fibres and lime on the properties of cement mortar.
  • de Oliveira, C. P. M., Farah, I. F., Koch, K., Drewes, J. E., Viana, M. M., & Amaral, M. C. S. (2022). TiO2-Graphene oxide nanocomposite membranes: A review. Separation and Purification Technology, 280, 119836. https://doi.org/10.1016/j.seppur.2021.119836
  • Deschamps, G., Caruel, H., Borredon, M.-E., Bonnin, C., & Vignoles, C. (2003). Oil removal from water by selective sorption on hydrophobic cotton fibers. 1. Study of sorption properties and comparison with other cotton fiber-based sorbents. Environmental Science & Technology, 37(5), 1013–1015. https://doi.org/10.1021/es020061s
  • Devarshi, S., Pndhare, A., Lokhande, P. E., Mooney, J. P., & Chakrabarti, S. (2023). Natural fiber-reinforced thermoplastic composite synthesis methods and potential applications. ES Materials & Manufacturing, 21, 827. https://doi.org/10.30919/esmm5f827
  • Dey, S., & Haripavan, N. (2023). Applications of plants leaf-based biosorbents for removal of iron and phosphorus from contaminated water: A review. Biomedical Materials & Devices, 1(1), 122–145. https://doi.org/10.1007/s44174-022-00029-w
  • Dhaka, A., & Chattopadhyay, P. (2021). A review on physical remediation techniques for treatment of marine oil spills. Journal of Environmental Management, 288, 112428. https://doi.org/10.1016/j.jenvman.2021.112428
  • Dittenber, D. B., & GangaRao, H. V. S. (2012). Critical review of recent publications on the use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8), 1419–1429. Composites Part A: Applied Science and Manufacturing, https://doi.org/10.1016/j.compositesa.2011.11.019
  • El Gheriany, I. A., El Saqa, F. A., Amer, A. A. E. R., & Hussein, M. (2020). Oil spill sorption capacity of raw and thermally modified orange peel waste. Alexandria Engineering Journal, 59(2), 925–932. https://doi.org/10.1016/j.aej.2020.03.024
  • El-Din, G. A., Amer, A. A., Malsh, G., & Hussein, M. (2018). Study on the use of banana peels for oil spill removal. Alexandria Engineering Journal, 57(3), 2061–2068. https://doi.org/10.1016/j.aej.2017.05.020
  • Faisal, M., Muhammad, K., Gul, S., Noor-ul-Amin. (2016). Synthesis and characterization of geopolymer from bagasse bottom ash, waste of sugar industries, and naturally available china clay. Journal of Cleaner Production, 129, 491–495. https://doi.org/10.1016/j.jclepro.2016.04.024
  • Faniyi, I. O., Fasakin, O., Olofinjana, B., Adekunle, A. S., Oluwasusi, T. V., Eleruja, M. A., & Ajayi, E. O. B. (2019). The comparative analyses of reduced graphene oxide (RGO) were prepared via green, mild, and chemical approaches. SN Applied Sciences, 1(10), 1–7. https://doi.org/10.1007/s42452-019-1188-7
  • Filipović, R., Lazić, D., Perušić, M., & Stijepović, I. (2010). Oil absorption in mesoporous silica particles. Processing and Application of Ceramics, 4(4), 265–269.
  • Galvão, J. G., Santos, R. L., Lira, A. A. M., Kaminski, R., Sarmento, V. H., Severino, P., Dolabella, S. S., Scher, R., Souto, E. B., & Nunes, R. S. (2020). Stearic acid, beeswax, and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers. Applied Sciences, 10(18), 6267. https://doi.org/10.3390/app10186267
  • Ganesh, B. M., Isloor, A. M., & Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199–207. https://doi.org/10.1016/j.desal.2012.11.037
  • Garcia, S. M., Du Clos, K. T., Hawkins, O. H., & Gemmell, B. J. (2020). Sublethal effects of crude oil and chemical dispersants on multiple life history stages of the eastern oyster, Crassostrea virginica. Journal of Marine Science and Engineering, 8(10), 808. https://doi.org/10.3390/jmse8100808
  • Ghafoori, S., Omar, M., Koutahzadeh, N., Zendehboudi, S., Malhas, R. N., Mohamed, M., Al-Zubaidi, S., Redha, K., Baraki, F., & Mehrvar, M. (2022). New advancements, challenges, and future need on the treatment of oilfield produced water: A state-of-the-art review. Separation and Purification Technology, 289, 120652. https://doi.org/10.1016/j.seppur.2022.120652
  • Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. https://doi.org/10.1007/s10853-019-03990-y
  • Gupta, S., & Tai, N. H. (2016). Carbon materials as oil sorbents: A review on the synthesis and performance. Journal of Materials Chemistry A, 4(5), 1550–1565. https://doi.org/10.1039/C5TA08321D
  • He, Y., Wan, M., Wang, Z., Zhang, X., Zhao, Y., & Sun, L. (2019). Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton fabrics for oil/water separation. Surface and Coatings Technology, 378, 125079. https://doi.org/10.1016/j.surfcoat.2019.125079
  • Hebbar, R. S., Isloor, A. M., & Ismail, A. F. (2017). Contact angle measurements. In Membrane characterization (pp. 219–255). Elsevier.
  • Hoang, A. T., Nguyen, X. P., Duong, X. Q., & Huynh, T. T. (2021). Sorbent-based devices for the removal of spilled oil from water: a review. Environmental Science and Pollution Research, 28(23), 28876–28910. https://doi.org/10.1007/s11356-021-13775-z
  • Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM Journal of the Minerals Metals and Materials Society, 58(11), 80–86. https://doi.org/10.1007/s11837-006-0234-2
  • Hossain, M. K., Karim, M. R., Chowdhury, M. R., Imam, M. A., Hosur, M., Jeelani, S., & Farag, R. (2014). Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Industrial Crops and Products, 58, 78–90. https://doi.org/10.1016/j.indcrop.2014.04.002
  • Huang, H., Tian, M., Yang, J., Li, H., Liang, W., Zhang, L., & Li, X. (2008). Stearic acid surface modifying Mg (OH) 2: Mechanism and its effect on properties of ethylene vinyl acetate/Mg (OH) 2 composites. Journal of Applied Polymer Science, 107(5), 3325–3331. https://doi.org/10.1002/app.24894
  • Huang, W., Zhang, L., Lai, X., Li, H., & Zeng, X. (2020). Highly hydrophobic F-rGO@ wood sponge for efficient clean-up of viscous crude oil. Chemical Engineering Journal, 386, 123994. https://doi.org/10.1016/j.cej.2019.123994
  • Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Effect of fiber surface treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Composites Science and Technology, 68(2), 424–432. https://doi.org/10.1016/j.compscitech.2007.06.022
  • Husseien, M., Amer, A. A., El-Maghraby, A., & Taha, N. A. (2009). Availability of barley straw application on oil spill clean up. International Journal of Environmental Science & Technology, 6(1), 123–130. https://doi.org/10.1007/BF03326066
  • Idris, J., Eyu, G. D., Mansor, A. M., Ahmad, Z., & Chukwuekezie, C. S. (2014). A preliminary study of biodegradable waste as sorbent material for oil spill cleanup. The Scientific World Journal, 2014, 1–5. https://doi.org/10.1155/2014/638687
  • Iliyasu, I., Bello, J. B., Dibal, M. N., Oyedeji, A. N., Salami, K. A., & Oyedeji, E. O. (2022). Response surface methodology for the optimization of the effect of fiber parameters on the physical and mechanical properties of celeb palm fiber reinforced epoxy composites. Scientific African, 16, e01269. https://doi.org/10.1016/j.sciaf.2022.e01269
  • Jiang, Z.-R., Ge, J., Zhou, Y.-X., Wang, Z. U., Chen, D., Yu, S.-H., & Jiang, H.-L. (2016). Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Materials, 8(3), e253–e253. https://doi.org/10.1038/am.2016.22
  • Juela, D., Vera, M., Cruzat, C., Alvarez, X., & Vanegas, E. (2021). Adsorption properties of sugarcane bagasse and corn cob for the sulfamethoxazole removal in a fixed-bed column. Sustainable Environment Research, 31(1), 1–14. https://doi.org/10.1186/s42834-021-00102-x
  • Kamgar, A., & Hassanajili, S. (2020). Super-hydrophobic Fe3O4@ SiO2@ MPS nanoparticles for oil remediation: the influence of pH and concentration on clustering phenomenon and oil sorption. Journal of Molecular Liquids, 315, 113709. https://doi.org/10.1016/j.molliq.2020.113709
  • Karnnet, S., Potiyaraj, P., & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modified gelatin films. Polymer Degradation and Stability, 90(1), 106–110. https://doi.org/10.1016/j.polymdegradstab.2005.02.016
  • Khalili, D. (2016). Graphene oxide: A promising carbon catalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols, and enolizable ketones by hydrogen peroxide/KSCN in water. New Journal of Chemistry, 40(3), 2547–2553. https://doi.org/10.1039/C5NJ02314A
  • Kovačević, A., Radoičić, M., Marković, D., Ponjavić, M., Nikodinovic-Runic, J., & Radetić, M. (2023). Non-woven sorbent based on recycled jute fibers for efficient oil spill clean-up: From production to biodegradation. Environmental Technology & Innovation, 31, 103170. https://doi.org/10.1016/j.eti.2023.103170
  • Ku, B.-J., Lee, B.-M., Kim, D. H., Mnoyan, A., Hong, S.-K., Go, K. S., Kwon, E. H., Kim, S.-H., Choi, J.-H., & Lee, K. (2021). Photothermal fabrics for efficient oil-spill remediation via solar-driven evaporation combined with adsorption. ACS Applied Materials & Interfaces, 13(11), 13106–13113. https://doi.org/10.1021/acsami.0c21656
  • Kudaybergenov, K. K., Ongarbayev, E. K., & Mansurov, Z. A. (2012). Petroleum sorption by thermally treated rice husks derived from agricultural byproducts. Eurasian Chemico-Technological Journal, 15(1), 57–66. https://doi.org/10.18321/ectj141
  • Kumagai, S., Noguchi, Y., Kurimoto, Y., & Takeda, K. (2007). Oil adsorbent is produced by the carbonization of rice husks. Waste Management (New York, N.Y.), 27(4), 554–561. https://doi.org/10.1016/j.wasman.2006.04.006
  • Kumar, A., Singh Negi, Y., Choudhary, V., & Kant Bhardwaj, N. (2020). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1–8. https://doi.org/10.12691/jmpc-2-1-1
  • Laitinen, O., Suopajärvi, T., Österberg, M., & Liimatainen, H. (2017). Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Applied Materials & Interfaces, 9(29), 25029–25037. https://doi.org/10.1021/acsami.7b06304
  • Law, K.-Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. The Journal of Physical Chemistry Letters, 5 (4), 686–688. https://doi.org/10.1021/jz402762h
  • Law, K.-Y. (2015). Water–surface interactions and definitions for hydrophilicity, hydrophobicity, and superhydrophobicity. Pure and Applied Chemistry, 87(8), 759–765. https://doi.org/10.1515/pac-2014-1206
  • León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., & Orihuela, P. A. (2017). FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as a carrier for 2-methoxyestradiol. Applied Sciences, 7(1), 49. https://doi.org/10.3390/app7010049
  • Li, S., Du, L., Wei, Z., & Wang, W. (2017). Aqueous-phase aerosols on the air-water interface: Response of fatty acid Langmuir monolayers to atmospheric inorganic ions. The Science of the Total Environment, 580, 1155–1161. https://doi.org/10.1016/j.scitotenv.2016.12.072
  • Liu, Z., Zhang, C., Zhang, X., Wang, C., Liu, F., Yuan, R., & Wang, H. (2021). Durable superhydrophobic PVDF/FEVE/GO@ TiO2 composite coating with excellent anti-scaling and UV resistance properties. Chemical Engineering Journal, 411, 128632. https://doi.org/10.1016/j.cej.2021.128632
  • Loh, X. H., Daud, M. A. M., & Selamat, M. Z. (2016). Mechanical properties of kenaf/polypropylene composite: An investigation. Journal of Mechanical Engineering and Sciences, 10(2), 2098–2110.
  • Loh, Y. R., Sujan, D., Rahman, M. E., & Das, C. A. (2013). Sugarcane bagasse—The future composite material: A literature review. Resources, Conservation and Recycling, 75, 14–22. https://doi.org/10.1016/j.resconrec.2013.03.002
  • Lu, A., Salabas, E. e., & Schüth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie (International ed. in English), 46(8), 1222–1244. https://doi.org/10.1002/anie.200602866
  • Ma, F., Chen, S., Liu, P., Geng, F., Li, W., Liu, X., He, D., & Pan, D. (2016). Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid. Materials Science & Engineering. C, Materials for Biological Applications, 62, 407–413. https://doi.org/10.1016/j.msec.2016.01.087
  • Mahmoudi, Z., Soleymani, F., Abbasi, S. M., Khalaj, G., & Najafi, A. (2024). Sol-gel synthesis and characterization of mesoporous TiB2 nanopowder via Titanium isopropoxide/trimethyl borate precursors. Ceramics International. https://doi.org/10.1016/j.ceramint.2024.02.304
  • Mamaghani, A. H., Haghighat, F., & Lee, C.-S. (2018). Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chemical Engineering Journal, 337, 60–73. https://doi.org/10.1016/j.cej.2017.12.082
  • Mardiyati, Y., Fauza, A. N., Rachman, O. A., Steven, S., & Santosa, S. P. (2022). A Silica–Lignin Hybrid Filler in a Natural Rubber Foam Composite as a Green Oil Spill Absorbent. Polymers, 14(14), 2930. https://doi.org/10.3390/polym14142930
  • Mazrouei-Sebdani, Z., Salimian, S., Khoddami, A., & Shams-Ghahfarokhi, F. (2019). Sodium silicate-based aerogel for absorbing oil from water: the impact of surface energy on the oil/water separation. Materials Research Express, 6(8), 085059. https://doi.org/10.1088/2053-1591/ab1eed
  • Melesse, G. T., Hone, F. G., & Mekonnen, M. A. (2022). Extraction of cellulose from sugarcane bagasse optimization and characterization. Advances in Materials Science and Engineering, 2022, 1–10. https://doi.org/10.1155/2022/1712207
  • Mihaly Cozmuta, A., Peter, A., Mihaly Cozmuta, L., Nicula, C., Crisan, L., Baia, L., & Turila, A. (2015). Active packaging system based on Ag/TiO2 nanocomposite used for extending the shelf life of bread. Chemical and microbiological investigations. Packaging Technology and Science, 28(4), 271–284. https://doi.org/10.1002/pts.2103
  • Mojžiš, M., Bubeníková, T., Zachar, M., Kačíková, D., & Štefková, J. (2019). Comparison of natural and synthetic sorbents’ efficiency at oil spill removal. BioResources, 14(4), 8738–8752. https://doi.org/10.15376/biores.14.4.8738-8752
  • Mugundan, S., Rajamannan, B., Viruthagiri, G., Shanmugam, N., Gobi, R., & Praveen, P. (2015). Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Applied Nanoscience, 5(4), 449–456. https://doi.org/10.1007/s13204-014-0337-y
  • Narayanasamy, S., Sundaram, V., Sundaram, T., & Vo, D.-V N. (2022). Biosorptive ascendency of plant-based biosorbents in removing hexavalent chromium from aqueous solutions–Insights into isotherm and kinetic studies. Environmental Research, 210, 112902. https://doi.org/10.1016/j.envres.2022.112902
  • Nguyen, H. T. V., Ngo, T. H. A., Do, K. D., Nguyen, M. N., Dang, N. T. T., Nguyen, T. T. H., Vien, V., & Vu, T. A. (2019). Preparation and characterization of a hydrophilic polysulfone membrane using graphene oxide. Journal of Chemistry, 2019, 1–10. https://doi.org/10.1155/2019/3164373
  • Niu, H., Li, J., Wang, X., Luo, F., Qiang, Z., & Ren, J. (2021). Solar-assisted, fast, and in situ recovery of crude oil spill by a superhydrophobic and photothermal sponge. ACS Applied Materials & Interfaces, 13(18), 21175–21185. https://doi.org/10.1021/acsami.1c00452
  • Nyankson, E. J., DeCuir, M. B., & Gupta, R. (2015). Soybean lecithin as a dispersant for crude oil spills. ACS Sustainable Chemistry & Engineering, 3(5), 920–931. https://doi.org/10.1021/acssuschemeng.5b00027
  • Nyankson, E., Olasehinde, O., John, V. T., & Gupta, R. B. (2015). Surfactant-loaded halloysite clay nanotube dispersants for crude oil spill remediation. Industrial & Engineering Chemistry Research, 54(38), 9328–9341. https://doi.org/10.1021/acs.iecr.5b02032
  • Nyankson, E., Rodene, D., & Gupta, R. B. (2015). Advancements in crude oil spill remediation research after the deepwater horizon oil spill. Water, Air, & Soil Pollution, 227(1), 29. https://doi.org/10.1007/s11270-015-2727-5
  • Onwuka, J. C., Agbaji, E. B., Ajibola, V. O., & Okibe, F. G. (2018). Treatment of crude oil-contaminated water with chemically modified natural fiber. Applied Water Science, 8(3), 1–10. https://doi.org/10.1007/s13201-018-0727-5
  • Patti, A., Lecocq, H., Serghei, A., Acierno, D., & Cassagnau, P. (2021). The universal usefulness of stearic acid as a surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry, 96, 1–33. https://doi.org/10.1016/j.jiec.2021.01.024
  • Peterson, C. H., Rice, S. D., Short, J. W., Esler, D., Bodkin, J. L., Ballachey, B. E., & Irons, D. B. (2003). Long-term ecosystem response to the exxon valdez oil spill. Science (New York, N.Y.), 302(5653), 2082–2086. (https://doi.org/10.1126/science.1084282
  • Ponec, V., Knor, Z., & Cerny, S. (2018). Adsorption on solids. Butterworth.
  • Prabhath, N., Kumara, B. S., Vithanage, V., Samarathunga, A. I., Sewwandi, N., Damruwan, H.-G H., Lewangamage, S., & Koswattage, K. R. (2023). Investigation of pozzolanic properties of sugarcane bagasse ash for commercial applications. ACS Omega, 8(13), 12052–12061. https://doi.org/10.1021/acsomega.2c07844
  • Ramesh, M., Rajeshkumar, L., & Bhuvaneswari, V. (2022). Leaf fibers as reinforcements in green composites: a review on processing, properties, and applications. Emergent Materials, 5(3), 833–857. https://doi.org/10.1007/s42247-021-00310-6
  • Rangappa, S. M., & Siengchin, S. (2018). Natural fibers as perspective materials. Applied Science and Engineering Progress, 11(4).
  • Ratcha, A., Yoosuk, B., & Kongparakul, S. (2013). Grafted methyl methacrylate and butyl methacrylate onto natural rubber foam for oil sorbent. Advanced Materials Research, 844, 385–390. https://doi.org/10.4028/www.scientific.net/AMR.844.385
  • Rather, A. M., Jana, N., Hazarika, P., & Manna, U. (2017). Sustainable polymeric material for the facile and repetitive removal of oil spills through the complementary use of both selective absorption and active-filtration processes. Journal of Materials Chemistry A, 5(44), 23339–23348. https://doi.org/10.1039/C7TA07982F
  • Sadatshojaie, A., Wood, D. A., Jokar, S. M., & Rahimpour, M. R. (2021). Applying ultrasonic fields to separate water contained in medium-gravity crude oil emulsions and determining crude oil adhesion coefficients. Ultrasonics Sonochemistry, 72, 105448. https://doi.org/10.1016/j.ultsonch.2020.105448
  • Santos, A. S., Ferreira, P. J. T., & Maloney, T. (2021). Bio-based materials for nonwovens. Cellulose, 28(14), 8939–8969. https://doi.org/10.1007/s10570-021-04125-w
  • Satria, M., & Saleh, T. A. (2022). Effect of loading various nanoparticles on superhydrophobic/superoleophilic stearic acid-modified polyurethane foams for oil-water separation. Journal of Environmental Chemical Engineering, 10(6), 108577. https://doi.org/10.1016/j.jece.2022.108577
  • Scheufele, F. B., Ribeiro, C., Módenes, A. N., Espinoza-Quiñones, F. R., Bergamasco, R., & Pereira, N. C. (2015). Assessment of drying temperature of sugarcane bagasse on sorption of reactive blue 5G dye. Fibers and Polymers, 16(8), 1646–1656. https://doi.org/10.1007/s12221-015-5087-2
  • Shah, M. U. H., Moniruzzaman, M., Reddy, A. V. B., Talukder, M. M. R., Yusup, S. B., & Goto, M. (2020). An environmentally benign ionic liquid based formulation for enhanced oil spill remediation: Optimization of environmental factors. Journal of Molecular Liquids, 314, 113603. https://doi.org/10.1016/j.molliq.2020.113603
  • Shi, Z., Li, Y., Dong, L., Guan, Y., & Bao, M. (2021). Deep remediation of oil spill based on the dispersion and photocatalytic degradation of biosurfactant-modified TiO2. Chemosphere, 281, 130744. https://doi.org/10.1016/j.chemosphere.2021.130744
  • Sholeh, M., Rochmadi, R., Sulistyo, H., & Budhijanto, B. (2021). Nanostructured silica from bagasse ash: the effect of synthesis temperature and pH on its properties. Journal of Sol-Gel Science and Technology, 97(1), 126–137. https://doi.org/10.1007/s10971-020-05416-7
  • Singh, H., Bhardwaj, N., Arya, S. K., & Khatri, M. (2020). Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environmental Nanotechnology, Monitoring & Management, 14, 100305. https://doi.org/10.1016/j.enmm.2020.100305
  • Some, S., Xu, Y., Kim, Y., Yoon, Y., Qin, H., Kulkarni, A., Kim, T., & Lee, H. (2013). Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Scientific Reports, 3(1), 1868. https://doi.org/10.1038/srep01868
  • Songsaeng, S., Thamyongkit, P., & Poompradub, S. (2019). Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. Journal of Advanced Research, 20, 79–89. https://doi.org/10.1016/j.jare.2019.05.007
  • Sood, A., Gupta, A., Bharadwaj, R., Ranganath, P., Silverman, N., & Agrawal, G. (2022). Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydrate Polymers, 294, 119833. https://doi.org/10.1016/j.carbpol.2022.119833
  • Tang, Z., Hess, D. W., & Breedveld, V. (2015). Fabrication of oleophobic paper with tunable hydrophilicity by treatment with non-fluorinated chemicals. Journal of Materials Chemistry A, 3(28), 14651–14660. https://doi.org/10.1039/C5TA03520A
  • Torres, D. H. A., da Costa Dias, F., Bahiana, B. R., Haddad, A. N., Chinelli, C. K., & Soares, C. A. P. (2020). Oil spill simulation and analysis of its behavior under the effect of weathering and chemical dispersant: a case study of the Bacia de Campos—Brazil. Water, Air, & Soil Pollution, 231(10), 1–21. https://doi.org/10.1007/s11270-020-04857-8
  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014
  • Turco, A., Malitesta, C., Barillaro, G., Greco, A., Maffezzoli, A., & Mazzotta, E. (2015). A magnetic and highly reusable macroporous superhydrophobic/superoleophilic PDMS/MWNT nanocomposite for oil sorption from water. Journal of Materials Chemistry A, 3(34), 17685–17696. https://doi.org/10.1039/C5TA04353K
  • Vlaev, L., Petkov, P., Dimitrov, A., & Genieva, S. (2011). Cleanup of water polluted with crude oil or diesel fuel using rice husk ash. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 957–964. https://doi.org/10.1016/j.jtice.2011.04.004
  • Vocciante, M., Finocchi, A., De Folly D′ Auris, A., Conte, A., Tonziello, J., Pola, A., & Reverberi, A. Pietro. (2019). Enhanced oil spill remediation by adsorption with interlinked multilayered graphene. Materials, 12(14), 2231. https://doi.org/10.3390/ma12142231
  • Wang, B., Liang, W., Guo, Z., & Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 44Issue(1), 336–361. (https://doi.org/10.1039/c4cs00220b
  • Wang, H., Wang, E., Liu, Z., Gao, D., Yuan, R., Sun, L., & Zhu, Y. (2015). Novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. Journal of Materials Chemistry A, 3(1), 266–273. https://doi.org/10.1039/C4TA03945A
  • Wang, L., & Hou, D. (2024). Underlying mechanisms involved in biochar-induced metal stabilization. In Biochar application in soil to immobilize heavy metals (pp. 9–43). Elsevier.
  • Wang, Y., Shi, Z., & Yin, J. (2011). Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Applied Materials & Interfaces, 3(4), 1127–1133. https://doi.org/10.1021/am1012613
  • Wang, Y., Zhou, L., Luo, X., Zhang, Y., Sun, J., Ning, X., & Yuan, Y. (2019). Solar-heated graphene sponge for high-efficiency clean-up of viscous crude oil spill. Journal of Cleaner Production, 230, 995–1002. https://doi.org/10.1016/j.jclepro.2019.05.178
  • Wong, C., McGowan, T., Bajwa, S. G., & Bajwa, D. S. (2016). Impact of fiber treatment on the oil absorption characteristics of plant fibers. BioResources, 11(3), 6452–6463. https://doi.org/10.15376/biores.11.3.6452-6463
  • Wu, X., Lei, Y., Li, S., Huang, J., Teng, L., Chen, Z., & Lai, Y. (2021). Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil. Journal of Hazardous Materials, 403, 124090. https://doi.org/10.1016/j.jhazmat.2020.124090
  • Yang, J., Zhang, Z., Men, X., Xu, X., & Zhu, X. (2011). A simple approach to fabricate superoleophobic coatings. New Journal of Chemistry, 35(3), 576–580. https://doi.org/10.1039/C0NJ00826E
  • Yang, T., Feng, J., Zhang, Q., Wu, W., Mo, H., Huang, L., & Zhang, W. (2020). l-Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel. Drug Delivery, 27(1), 575–584. https://doi.org/10.1080/10717544.2020.1748762
  • Yang, X., Fan, W., Wang, H., Shi, Y., Wang, S., Liew, R. K., & Ge, S. (2022). Recycling of bast textile wastes into high value-added products: a review. Environmental Chemistry Letters, 20(6), 3747–3763. https://doi.org/10.1007/s10311-022-01484-z
  • Yen Tan, J., Yan Low, S., Ban, Z. H., & Siwayanan, P. (2021). A review on oil spill clean-up using bio-sorbent materials with special emphasis on utilization of Kenaf Core Fibers. BioResources, 16(4), 8394–8416. https://doi.org/10.15376/biores.16.4.8394-8416
  • Yurak, V., Apakashev, R., Dushin, A., Usmanov, A., Lebzin, M., & Malyshev, A. (2021). Testing of natural sorbents for the assessment of heavy metal ions’ adsorption. Applied Sciences, 11(8), 3723. https://doi.org/10.3390/app11083723
  • Zaheer, S., Bhatti, H. N., Sadaf, S., Safa, Y., & Zia-Ur-Rehman, M. (2014). Biosorption characteristics of sugarcane bagasse for the removal of Foron Blue E-BL dye from aqueous solutions. JAPS: Journal of Animal & Plant Sciences, 24(1).
  • Zamparas, M., Tzivras, D., Dracopoulos, V., & Ioannides, T. (2020). Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A review. Molecules (Basel, Switzerland), 25(19), 4522. https://doi.org/10.3390/molecules25194522
  • Zhang, L., He, Y., Luo, P., Ma, L., Li, S., Nie, Y., Zhong, F., Wang, Y., & Chen, L. (2022). Photocatalytic GO/M88A “interceptor plate” assembled nanofibrous membrane with photo-Fenton self-cleaning performance for oil/water emulsion separation. Chemical Engineering Journal, 427, 130948. https://doi.org/10.1016/j.cej.2021.130948
  • Zhong, Y., Wang, R., Chen, J., Duan, C., Huang, Z., Yu, S., Guo, H., & Zhou, Y. (2022). Surface-terminated hydroxyl groups for deciphering the facet-dependent photocatalysis of anatase TiO2. ACS Applied Materials & Interfaces, 14(15), 17601–17609. https://doi.org/10.1021/acsami.2c04302
  • Zhou, J., Zhang, Y., Jia, G., Chen, Z., Yang, Y., & Zhang, L. (2021). A multifunctional sponge incorporated with TiO 2 and graphene oxide as a reusable absorbent for oil/water separation and dye absorption. New Journal of Chemistry, 45(10), 4835–4842. https://doi.org/10.1039/D0NJ06298G
  • Zhu, C., Guo, S., Fang, Y., & Dong, S. (2010). Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 4(4), 2429–2437. https://doi.org/10.1021/nn1002387
  • Zhu, J., Liu, B., Li, L., Zeng, Z., Zhao, W., Wang, G., & Guan, X. (2016). Simple and green fabrication of a superhydrophobic surface by one-step immersion for continuous oil/water separation. The Journal of Physical Chemistry. A, 120(28), 5617–5623. https://doi.org/10.1021/acs.jpca.6b06146
  • Zoghi, A. M., & Allahyari, S. (2022). Multifunctional magnetic C3N4-rGO adsorbent with high hydrophobicity and simulated solar light-driven photocatalytic activity for oil spill removal. Solar Energy, 237, 320–332. https://doi.org/10.1016/j.solener.2022.04.005