100
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Tribological simulation analysis of artificially aged A356 alloy with minor addition of copper and zinc

, ORCID Icon, ORCID Icon, ORCID Icon, , & show all
Article: 2344118 | Received 15 Feb 2024, Accepted 12 Apr 2024, Published online: 25 Apr 2024

References

  • Alidokht, S. A., Abdollah-Zadeh, A., & Assadi, H. (2013). Effect of applied load on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear, 305(1-2), 291–298. https://doi.org/10.1016/j.wear.2012.11.043
  • Bai, B. N. P., Ramasesh, B. S., & Surappa, M. K. (1992). Dry sliding wear of A356-Al-SiCp composites. Wear, 157(2), 295–304. https://doi.org/10.1016/0043-1648(92)90068-J
  • Benabdallah, H., & Olender, D. (2006). Finite element simulation of the wear of polyoxymethylene in pin-on-disc configuration. wear, 261(11-12), 1213–1224. https://doi.org/10.1016/j.wear.2006.03.040
  • Bermúdez, M. D., Martínez-Nicolás, G., Carrión, F. J., Martínez-Mateo, I., Rodríguez, J. A., & Herrera, E. J. (2001). Dry and lubricated wear resistance of mechanically-alloyed aluminium-base sintered composites. Wear, 248(1-2), 178–186. https://doi.org/10.1016/S0043-1648(00)00553-6
  • Brhane, A. G., & Mekonone, S. T. (2023). Numeric simulation of steel twin disc system under rolling- sliding contact. Tribolology and Materials, 2(4), 181–188. https://doi.org/10.46793/tribomat.2023.019
  • Davis, J. R. (2001). Surface engineering for corrosion and wear resistance. ASM International.
  • Gowri Shankar, M. C. (2017). Precipitation hardening behavior of stir cast Al6061 based hybrid [Unpulished PhD thesis]. Manipal University, Manipal.
  • Kashimat, N., Sharma, S., Nayak, R., Manjunathaiah, K. B., Shettar, M., & Chennegowda, G. M. (2023). Experimental investigation of mechanical property and wear behaviour of T6 treated A356 alloy with minor addition of copper and zinc. Journal of Composites Science, 7(4), 149. https://doi.org/10.3390/jcs7040149
  • Li, H., Jiao, L., Xu, R., Li, F., Lu, S., Qiao, Y., Li, C., & Zhang, P. (2021). Surface wear behavior and friction and wear mechanism studies of A356/3 wt.% Al3Zr Composites. Journal of Materials Engineering and Performance, 30(5), 3892–3902. https://doi.org/10.1007/s11665-021-05707-2
  • Linn, Z. C., Swe, W. W. M., Soe, A. K., & Latt, A. K. (2023). Experimental and numerical analysis on the thermal performance of the aluminium absorber. Tribology and Materials, 2(4), 162–171. https://doi.org/10.46793/tribomat.2023.020
  • Mazahery, A., & Shabani, M. O. (2013). Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Transactions of Nonferrous Metals Society of China, 23(7), 1905–1914. https://doi.org/10.1016/S1003-6326(13)62676-X
  • Meng, H. C., & Ludema, K. C. (1995). Wear models and predictive equations: their form and content. Wear, 181-183(2), 443–457. https://doi.org/10.1016/0043-1648(95)90158-2
  • Nithesh, K., Nayak, R., Hande, R., Sharma, S., Gowri Shankar, M. C., & Doddapaneni, S. (2023). Dual role of trace elements in magnesium dissolved age hardened A356 alloy on microstructure and peak micro hardness. Manufacturing Review, 10(5), 5. https://doi.org/10.1051/mfreview/2023003
  • Nithesh, K., Sathyashankara, S., Rajesh, N., Gowrishankar, M. C., Karthik, B. M., & Doddapaneni, S. (2023). Wear behaviour analysis of heat treated A356 composite with copper and copper-coated zinc as reinforcements. Materials Research, 26(1), 1–12.
  • Peyre, P., Sollier, A., Chaieb, I., Berthe, L., Bartnicki, E., Braham, C., & Fabbro, R. (2003). FEM simulation of residual stresses induced by laser peening. The European Physical Journal Applied Physics, 23(2), 83–88. https://doi.org/10.1051/epjap
  • Põdra, P., & Andersson, S. (1999). Simulating sliding wear with finite element method. Tribology International, 32(2), 71–81. https://doi.org/10.1016/S0301-679X(99)00012-2
  • Prasad, B. K., Venkateswarlu, K., Modi, O. P., Jha, A. K., Das, S., Dasgupta, R., & Yegneswaran, A. H. (1998). Sliding wear behavior of some Al-Si alloys: Role of shape and size of Si particles and test conditions. Metallurgical and Materials Transactions A, 29(11), 2747–2752. https://doi.org/10.1007/s11661-998-0315-7
  • Rajesh, A. M. , Doddamani, S., Mohamed Kaleemulla, K., & Bharath, K. N. (2020). Dry sliding wear simulation of hybrid aluminum metal matrix composites. Advanced Composites and Hybrid Materials, 3(1), 120–126. https://doi.org/10.1007/s42114-020-00133-9
  • Reddy, P. V., Kumar, G. S., Krishnudu, D. M., & Rao, H. R. (2020). Mechanical and wear performances of aluminium‑based metal matrix composites : A review. Journal of Bio- and Tribo-Corrosion, 6(2), 1–16. https://doi.org/10.1007/s40735-020-00379-2
  • Sannino, A. P., & Rack, H. J. (1995). Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear, 189(1-2), 1–19. https://doi.org/10.1016/0043-1648(95)06657-8
  • Shabestari, S. G., & Moemeni, H. (2004). Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys. Journal of Materials Processing Technology, 153-154(1–3), 193–198. https://doi.org/10.1016/j.jmatprotec.2004.04.302
  • Shettar, M., Hiremath, P., Shankar, G., Kini, A., & Sharma, S. (2021). Tribolayer behaviour and wear of aged aluminium hybrid composites. International Journal of Automotive and Mechanical Engineering, 18(2), 8668–8676. https://doi.org/10.15282/ijame.18.2.2021.04.0660
  • Shetty, R., Hindi, J., Gurumurthy B. M., Hegde, A., Shivaprakash Y. M., Sharma, S., Amar Murthy A., & Muralishwara K. (2023). Effect of metallic reinforcement and mechanically mixed layer on the tribological characteristics of Al-Zn-Mg alloy matrix composites under T6 treatment mechanically mixed layer on the tribological characteristics of Al-Zn-Mg alloy matrix composites under T6 treatment. Cogent Engineering, 10(1), 1–13. https://doi.org/10.1080/23311916.2023.2200900
  • Shi, Z., Li, X., Duan, N., & Yang, Q. (2020). Evalution of tool wear and cutting performance considering effects of dynamic nodes movement based on FEM simulation. Chinese Journal of Aeronautics, 2(1), 1–13. https://doi.org/10.1016/j.cja.2020.08.003.
  • Singh, R. N., & Vanalkar, A. V. (2012). Analysis of wear phenomena in sliding contact surfaces. International Journal of Engineering Research and Applications, 2(3), 2403–2409.
  • Torabian, H., Pathak, J. P., & Tiwari, S. N. (1994). Wear characteristics of Al-Si alloys. Wear, 172(1), 49–58. https://doi.org/10.1016/0043-1648(94)90298-4
  • Umanath, K., Selvamani, S. T., & Palanikumar, K. (2011). Friction and wear behaviour of Al6061 alloy (SiC + Al2O3P) hybrid composites. International Journal of Engineering Science and Technology, 3(7), 5441–5451.
  • Uthayakumar, M., Aravindan, S., & Rajkumar, K. (2013). Wear performance of Al – SiC – B4C hybrid composites under dry sliding conditions. Materials and Design, 47, 456–464. https://doi.org/10.1016/j.matdes.2012.11.059
  • Vencl, A., Bobić, I., & Mišković, Z. (2008). Effect of thixocasting and heat treatment on the tribological properties of hypoeutectic Al – Si alloy. Wear, 264(7-8), 616–623. https://doi.org/10.1016/j.wear.2007.05.011
  • Vijay, R., Aju Kumar, V. N., Sadiq, A., & Rakesh Pillai, R. (2021). Numerical analysis of wear characteristics of zirconia coated aluminum 6061 alloy. IOP Conference Series: Materials Science and Engineering, 4(1), 1–9. doi: 10.1088/1757-899X/1059/1/012020.
  • Yu, S. Y., Ishii, H., Tohgo, K., Cho, Y. T., & Diao, D. (1997). Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminium alloy composite. Wear, 213(1-2), 21–28. https://doi.org/10.1016/S0043-1648(97)00207-X
  • Zafar, M. M., & Saeed Toor, Z. (2022). Corrosion degradation of aluminium alloys using a computational framework. Tribology and Materials, 1(4), 150–156. https://doi.org/10.46793/tribomat.2022.019