179
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

New probabilistic solutions of the generalized shallow water wave equation with dual random dispersion coefficients

ORCID Icon
Article: 2345516 | Received 11 Sep 2023, Accepted 16 Apr 2024, Published online: 03 May 2024

References

  • Akinyemi, L. (2023). Shallow Ocean soliton and localized waves in extended (2 + 1)-dimensional nonlinear evolution equations. Physics Letters A, 463(5), 128668. https://doi.org/10.1016/j.physleta.2023.128668
  • Akinyemi, L., Şenol, M., & Iyiola, O. S. (2021). Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Mathematics and Computers in Simulation, 182, 211–233. https://doi.org/10.1016/j.matcom.2020.10.017
  • Bevia, V., Calatayud, J., Cortés, J. C., & Jornet, M. (2023). On the generalized logistic random differential equation: Theoretical analysis and numerical simulations with real-world data. Communications in Nonlinear Science and Numerical Simulation, 116, 106832. https://doi.org/10.1016/j.cnsns.2022.106832
  • Casabán, M. C., Cortés, J. C., Navarro-Quiles, A., Romero, J. V., Roselló, M. D., & Villanueva, R. J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199–210. https://doi.org/10.1016/j.cnsns.2015.08.009
  • Casabán, M. C., Cortés, J. C., Romero, J. V., & Roselló, M. D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86–97. https://doi.org/10.1016/j.cnsns.2014.12.016
  • Casabán, M. C., Cortés, J. C., Romero, J. V., & Roselló, M. D. (2014). Determining the first probability density function of linear random initial value problems by the random variable transformation (RVT) technique: A comprehensive study. Abstract and Applied Analysis, 2014, 1–25. https://doi.org/10.1155/2014/248512
  • Cortés, J. C., Jódar, L., Roselló, M. D., & Villafuerte, L. (2012). Solving initial and two-boundary value linear random differential equations: a mean square approach. Applied Mathematics and Computation, 219(4), 2204–2211. https://doi.org/10.1016/j.amc.2012.08.066
  • El-Tawil, M. A., El-Tahan, W., & Hussein, A. (2007). Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator. Applied Mathematics and Computation, 187(2), 856–867. https://doi.org/10.1016/j.amc.2006.08.164
  • El-Wakil, S. A., & Abdo, M. A. (2007). Modified extended tanh-function method for solving nonlinear partial differential equations. Chaos Solitons & Fractals, 31(5), 1256–1264. https://doi.org/10.1016/j.chaos.2005.10.072
  • El-Wakil, S. A., El-Labany, S. K., Zahran, M. A., & Sabry, R. (2005). Modified extended tanh-function method and its applications to nonlinear equations. Journal of Applied Mathematics and Computing. 161(2), 403–412. https://doi.org/10.1016/j.amc.2003.12.035
  • El-Wakil, S. A., El-Labany, S. K., Zahran, M. A., & Sabry, R. (2002). Modified extended tanh-function method for solving nonlinear partial differential equations. Physics Letters A, 299(2-3), 179–188. https://doi.org/10.1016/S0375-9601(02)00669-2
  • Fahim, M. R. A., Kundu, P. R., Islam, M. E., Akbar, M. A., & Osman, M. S. (2022). Wave profile analysis of a couple of (3 + 1)-dimensional nonlinear evolution equations by sine-Gordon expansion approach. Journal of Ocean Engineering and Science, 7(3), 272–279. https://doi.org/10.1016/j.joes.2021.08.009
  • Ghanem, R. G., & Spanos, P. D. (2003). Stochastic finite elements: A spectral approach (Revised ed.). Courier Dover Publ.
  • Golmankhaneh, A. K., Porghoveh, N. A., & Baleanu, D. (2013). Mean square solutions of second-order random differential equations by using homotopy analysis method. Romanian Reports in Physics, 65(2), 350–361.
  • Hamza, A. E., Alshammari, M., Atta, D., & Mohammed, W. W. (2023). Fractional-stochastic shallow water equations and its analytical solutions. Results in Physics, 53, 106953. https://doi.org/10.1016/j.rinp.2023.106953
  • He, B. (2009). Building structures vibration differential equations under random excitation. In Yuan, Y., Cui, J., Mang, H.A. (Eds.), Computational structural engineering (pp. 787–793). Springer. https://doi.org/10.1007/978-90-481-2822-8_86
  • Hussein, A., & Selim, M. M. (2009). Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Applied Mathematics and Computation, 213(1), 250–261. https://doi.org/10.1016/j.amc.2009.03.016
  • Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193–7203. https://doi.org/10.1016/j.amc.2011.12.088
  • Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84–92. https://doi.org/10.1016/j.jqsrt.2013.03.018
  • Hussein, A., & Selim, M. M. (2015). Solution of stochastic generalized shallow water wave equation using RVT technique. The European Physical Journal Plus, 130(12), 249. https://doi.org/10.1140/epjp/i2015-15249-3
  • Hussein, A., & Selim, M. M. (2019). A complete probabilistic solution for a stochastic Milne problem of radiative transfer using KLE-RVT technique. Journal of Quantitative Spectroscopy and Radiative Transfer, 232, 54–65. https://doi.org/10.1016/j.jqsrt.2019.04.034
  • Hussein, A., & Selim, M. M. (2021). Propagation of dust acoustic waves in multi-components plasma with random parameters. The European Physical Journal Plus, 136(8), 797. https://doi.org/10.1140/epjp/s13360-021-01746-9
  • Hussein, A., El-Tawil, M., El-Tahan, W., & Mahmoud, A. A. (2008). Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM). Structural Engineering and Mechanics, 28(2), 129–152. https://doi.org/10.12989/sem.2008.28.2.129
  • Krishnan, E. V., Triki, H., Labidi, M., & Biswas, A. (2011). A study of shallow water waves with Gardner’s equation. Nonlinear Dynamics, 66(4), 497–507. https://doi.org/10.1007/s11071-010-9928-7
  • Kumar, S., & Mann, N. (2023). A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled Schrödinger–Boussinesq equations. Optical and Quantum Electronics, 55(8), 723. https://doi.org/10.1007/s11082-023-04869-8
  • Kumar, S., & Mohan, B. (2021). A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coefficient using Hirota method. Physica Scripta, 96(12), 125255. https://doi.org/10.1088/1402-4896/ac3879
  • Kumar, S., Mann, N., Kharbanda, H., & Inc, M. (2023). Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2 + 1)-dimensional Konopelchenko–Dubrovsky (KD) system. Analysis and Mathematical Physics, 13(3), 40. https://doi.org/10.1007/s13324-023-00802-0
  • Kumar, S., Rani, S., & Mann, N. (2022). Diverse analytical wave solutions and dynamical behaviors of the new (2 + 1)-dimensional Sakovich equation emerging in fluid dynamics. The European Physical Journal Plus, 137(11), 1226. https://doi.org/10.1140/epjp/s13360-022-03397-w
  • Li, Y. Z., & Liu, J. G. (2018). Multiple periodic-soliton solutions of the (3 + 1)-dimensional generalised shallow water equation. Pramana, 90(6), 71. https://doi.org/10.1007/s12043-018-1568-3
  • Liu, J. G., & He, Y. (2017). New periodic solitary wave solutions for the (3 + 1)-dimensional generalized shallow water equation. Nonlinear Dynamics, 90(1), 363–369. https://doi.org/10.1007/s11071-017-3667-y
  • Mirzazadeh, M., Akbulut, A., Taşcan, F., & Akinyemi, L. (2022). A novel integration approach to study the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index. Optik, 252, 168529. https://doi.org/10.1016/j.ijleo.2021.168529
  • Mohammed, W. W., Al-Askar, F. M., Cesarano, C., & Aly, E. S. (2023). The soliton solutions of the stochastic shallow water wave equations in the sense of beta-derivative. Mathematics, 11(6), 1338. https://doi.org/10.3390/math11061338
  • Nelsen, R. B. (1999). An introduction to copulas. Springer.
  • Øksendal, B. (2010). Stochastic differential equations: An introduction with applications (6th ed.). Springer.
  • Tasnim, F., Akbar, M. A., & Osman, M. S. (2023). The extended direct algebraic method for extracting analytical solitons solutions to the cubic nonlinear Schrödinger equation involving beta derivatives in space and time. Fractal and Fractional, 7(6), 426. https://doi.org/10.3390/fractalfract7060426
  • Tripathy, A., Sahoo, S., Rezazadeh, H., Izgi, Z. P., & Osman, M. S. (2023). Dynamics of damped and undamped wave natures in ferromagnetic materials. Optik, 281, 170817. https://doi.org/10.1016/j.ijleo.2023.170817
  • Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2011). Probability and statistics for engineers and scientists (8th ed., pp. 212–217). Printice Hall.