230
Views
0
CrossRef citations to date
0
Altmetric
Material Engineering

Tensile properties of basalt/jute fiber reinforced epoxy composite

, , , , , , , , & ORCID Icon show all
Article: 2348083 | Received 25 Nov 2023, Accepted 19 Apr 2024, Published online: 09 May 2024

References

  • Abdurohman, K., Satrio, T., Muzayadah, N. L. & Teten. (2018). A comparison process between hand lay-up, vacuum infusion and vacuum bagging method toward e-glass EW 185/lycal composites. Journal of Physics: Conference Series, 1130, 012018. https://doi.org/10.1088/1742-6596/1130/1/012018
  • Aly, M., Hashmi, M. S. J., Olabi, A. G., Benyounis, K. Y., Messeiry, M., Hussain, A. I., & Abadir, E. F. (2012). Optimization of alkaline treatment conditions of flax fiber using box–behnken method. Journal of Natural Fibers, 9(4), 256–276. https://doi.org/10.1080/15440478.2012.738036
  • Aranno, T. M., Mia, S., Ullah Khan, M. S., Hasan, M. A. M., Shams Supto, N., Shaid Sujon, A., Bin Rashid, A., & Ferdous, M. S. (2019). Fabrication, experimental investigation of jute fiber reinforced epoxy composites and hybrid composites. IOP Conference Series: Materials Science and Engineering, 628(1), 012011. https://doi.org/10.1088/1757-899X/628/1/012011
  • Arshad, M. N., Mohit, H., Sanjay, M. R., Siengchin, S., Khan, A., Alotaibi, M. M., Asiri, A. M., & Rub, M. A. (2021). Effect of coir fiber and TiC nanoparticles on basalt fiber reinforced epoxy hybrid composites: physico–mechanical characteristics. Cellulose, 28(6), 3451–3471. https://doi.org/10.1007/s10570-021-03752-7
  • Azim, A. Y. M. A., Alimuzzaman, S., & Sarker, F. (2022). Optimizing the fabric architecture and effect of γ-radiation on the mechanical properties of jute fiber reinforced polyester composites. ACS Omega, 7(12), 10127–10136. https://doi.org/10.1021/acsomega.1c06241.
  • Balan, G. S., & Ravichandran, M. (2020). Study of moisture absorption characteristics of jute fiber reinforced waste plastic filled polymer composite. Materials Today: Proceedings, 27, 712–717. https://doi.org/10.1016/j.matpr.2019.11.260
  • Basak, R., Choudhury, P. L., & Pandey, K. M. (2018). Effect of temperature variation on surface treatment of short jute fiber-reinforced epoxy composites. Materials Today: Proceedings, 5(1), 1271–1277. https://doi.org/10.1016/j.matpr.2017.11.211
  • Chen, R. S., Mohd Ruf, M. F. H., Shahdan, D., & Ahmad, S. (2019). Enhanced mechanical and thermal properties of electrically conductive TPNR/GNP nanocomposites assisted with ultrasonication. PLoS One, 14(9), e0222662. https://doi.org/10.1371/journal.pone.0222662.
  • Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166–180. https://doi.org/10.1016/j.compositesb.2014.12.011
  • Dilfi, A., Balan, K. F. A., Bin, H., Xian, G., & Thomas, S. (2018). Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber‐reinforced epoxy composites. Polymer Composites, 39(S4), pp. E2519–E2528. https://doi.org/10.1002/pc.24817
  • Dinesh, S., Kumaran, P., Mohanamurugan, S., Vijay, R., Singaravelu, D. L., Vinod, A., Sanjay, M. R., Siengchin, S., & Bhat, K. S. (2020). Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research, 27(1), 9. https://doi.org/10.1007/s10965-019-1975-2
  • Doddi, P. R. V., Chanamala, R., & Dora, S. P. (2020). Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites. Materials Research Express, 7(1), 015329. https://doi.org/10.1088/2053-1591/ab6771
  • Ghabezi, P., & Harrison, N. (2020). Mechanical behavior and long-term life prediction of carbon/epoxy and glass/epoxy composite laminates under artificial seawater environment. Materials Letters., 261, 127091. https://doi.org/10.1016/j.matlet.2019.127091
  • Goodarz, M., Bahrami, S. H., Sadighi, M., & Saber-Samandari, S. (2019). Low-velocity impact performance of nanofiber-interlayered aramid/epoxy nanocomposites. Composites Part B: Engineering, 173, 106975. https://doi.org/10.1016/j.compositesb.2019.106975
  • Gopalan, V., Suthenthiraveerappa, V., Tiwari, S. K., Mehta, N., & Shukla, S. (2020). Dynamic characteristics of honeycomb sandwich beam made with jute/epoxy composite skin. Emerging Materials Research, 9(1), 1–12. https://doi.org/10.1680/jemmr.19.00082
  • Gopinath, P., Murugesan, P., Manjula Devi, R., Venkatesan, M., Sudha, K., Kannan, J. C., & Keerthika, P. (2021). Characterization of jute fibre-epoxy reinforced composites. Materials Today: Proceedings, 46, 8858–8863. https://doi.org/10.1016/j.matpr.2021.04.434
  • Hassan, M. Z., Sapuan, S. M., Roslan, S. A., Aziz, S. A., & Sarip, S. (2019). Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology, 8(4), 3517–3528. https://doi.org/10.1016/j.jmrt.2019.06.026
  • Hossain, M. R., Islam, M. A., Van Vuurea, A., & Verpoest, I. (2013). Tensile behavior of environment friendly jute epoxy laminated composite. Procedia Engineering, 56, 782–788. https://doi.org/10.1016/j.proeng.2013.03.196
  • Jamali, N., Rezvani, A., Khosravi, H., & Tohidlou, E. (2018). On the mechanical behavior of basalt fiber/epoxy composites filled with silanized graphene oxide nanoplatelets. Polymer Composites, 39(S4), E2472–E2482. https://doi.org/10.1002/pc.24766
  • John, M., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymers, 71(3), 343–364. https://doi.org/10.1016/j.carbpol.2007.05.040
  • Karnani, R., Krishnan, M., & Narayan, R. (1997). Biofiber‐reinforced polypropylene composites. Polymer Engineering & Science, 37(2), 476–483. https://doi.org/10.1002/pen.11691
  • Karthik, K., Rajamani, D., Venkatesan, E. P., Shajahan, M. I., Rajhi, A. A., Aabid, A., Baig, M., & Saleh, B. (2023). Experimental investigation of the mechanical properties of carbon/basalt/SiC nanoparticle/polyester hybrid composite materials. Crystals (Crystals), 13(3), 415. https://doi.org/10.3390/cryst13030415
  • Karvanis, K., Rusnáková, S., Krejčí, O., & Žaludek, M. (2020). Preparation, thermal analysis, and mechanical properties of basalt fiber/epoxy composites. Polymers, 12(8), 1785. https://doi.org/10.3390/polym12081785.
  • Khalid, M. Y., Arif, Z. U., Sheikh, M. F., & Nasir, M. A. (2021). Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. International Journal of Material Forming, 14(5), 1085–1095. https://doi.org/10.1007/s12289-021-01624-w
  • Khan, G. M. A., Terano, M., Gafur, M. A., & Alam, M. S. (2016). Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites. Journal of King Saud University - Engineering Sciences, 28(1), 69–74. https://doi.org/10.1016/j.jksues.2013.12.002
  • Krishnasamy, P., Rajamurugan, G., & Thirumurugan, M. (2021). Dynamic mechanical characteristics of jute fiber and 304 wire mesh reinforced epoxy composite. Journal of Industrial Textiles, 51(4), 540–558. https://doi.org/10.1177/1528083719883057
  • Kumar, N., & Singh, A. (2021). Study the effect of fiber orientation on mechanical properties of bidirectional basalt fiber reinforced epoxy composites. Materials Today: Proceedings, 39, 1581–1587. https://doi.org/10.1016/j.matpr.2020.05.707
  • Lee, J. J., Song, J., & Kim, H. (2014). Chemical stability of basalt fiber in alkaline solution. Fibers and Polymers, 15(11), 2329–2334. https://doi.org/10.1007/s12221-014-2329-7
  • Manzato, L., Takeno, M. L., Pessoa-Junior, W. A. G., Mariuba, L. A. M., & Simonsen, J. (2018). Optimization of cellulose extraction from jute fiber by Box-Behnken design. Fibers and Polymers, 19(2), 289–296. https://doi.org/10.1007/s12221-018-1123-8
  • Mehdikhani, M., Gorbatikh, L., Verpoest, I., & Lomov, S. V. (2019). Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials., 53(12), 1579–1669. https://doi.org/10.1177/0021998318772152
  • Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., & Hinrichsen, G. (2004). A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromolecular Materials and Engineering, 289(11), 955–974. https://doi.org/10.1002/mame.200400132
  • Nguyen, T. A., & Nguyen, T. H. (2022). Study on mechanical properties of banana fiber-reinforced materials poly (lactic acid) composites. International Journal of Chemical Engineering, 2022, 1–7. https://doi.org/10.1155/2022/8485038
  • Ou, Y., Zhu, D., & Li, H. (2016). Strain rate and temperature effects on the dynamic tensile behaviors of basalt fiber bundles and reinforced polymer composite. Journal of Materials in Civil Engineering, 28(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001615
  • Raja, N. D., & Kumar, K. V. A. (2020). Estimation of tensile and compression properties of 2D woven jute and kevlar hybrid laminate. IOP Conference Series: Materials Science and Engineering, 988(1), 012103. https://doi.org/10.1088/1757-899X/988/1/012103
  • Ramakrishnan, S., Krishnamurthy, K., Rajeshkumar, G., & Asim, M. (2021). Dynamic mechanical properties and free vibration characteristics of surface modified jute fiber/nano-clay reinforced epoxy composites. Journal of Polymers and the Environment, 29(4), 1076–1088. https://doi.org/10.1007/s10924-020-01945-y
  • Sim, J., Park, C., & Moon, D. Y. (2005). Characteristics of basalt fiber as a strengthening material for concrete structures. Composites Part B: Engineering, 36(6–7), 504–512. https://doi.org/10.1016/j.compositesb.2005.02.002
  • Singh, J. I. P., Singh, S., & Dhawan, V. (2020). Effect of alkali treatment on mechanical properties of jute fiber-reinforced partially biodegradable green composites using epoxy resin matrix. Polymers and Polymer Composites, 28(6), 388–397. https://doi.org/10.1177/0967391119880046
  • Sudha, S., & Thilagavathi, G. (2016). Effect of alkali treatment on mechanical properties of woven jute composites. The Journal of the Textile Institute, 107(6), 691–701. https://doi.org/10.1080/00405000.2015.1061736
  • Sudhakara, P., Obi Reddy, K., Prasad, C. V., Jagadeesh, D., Kim, H. S., Kim, B. S., Bae, S. I., & Song, J. I. (2013). Studies on borassus fruit fiber and its composites with polypropylene. Composites Research, 26(1), 48–53. https://doi.org/10.7234/kscm.2013.26.1.48
  • Toorchi, D., Tohidlou, E., & Khosravi, H. (2022). Enhanced flexural and tribological properties of basalt fiber-epoxy composite using nano-zirconia/graphene oxide hybrid system. Journal of Industrial Textiles, 51(2), 3238S–3252S. https://doi.org/10.1177/1528083720920573
  • Venkatachalam, G., Aravindh, S., Mark, M. P., Shenbaga Velu, P., Bharathraj, K. B., Varghese, A. K., Subramani, V. P., Ramakrishnan, R., & Manickam, S. (2023). Investigation of mechanical characteristics of coir fibre/hexagonal boron nitride reinforced polymer composite. Materials Research Express, 10(12), 125302. https://doi.org/10.1088/2053-1591/ad176c
  • Venkatachalam, G., Shankar, A. G., Vijay, K. V., Chandan, B. R., Prabaharan, G. P., & Raghav, D. (2015). Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites. IOP Conference Series: Materials Science and Engineering, 87, 012108. https://doi.org/10.1088/1757-899X/87/1/012108
  • Venkatesh, R., Karthi, N., Kawin, N., Prakash, T., Kannan, C. R., Karthigairajan, M., & Bobe, K. (2022). Synthesis and adsorbent performance of modified biochar with Ag/MgO nanocomposites for heat storage application. Adsorption Science & Technology, 2022. https://doi.org/10.1155/2022/7423102
  • Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. (2011). Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials and Design., 32 (7), 4017–4021. https://doi.org/10.1016/j.matdes.2011.03.002
  • Vinay, S. S., Sanjay, M. R., Siengchin, S., & Venkatesh, C. V. (2022). Basalt fiber reinforced polymer composites filled with nano fillers: A short review. Materials Today: Proceedings, 52, 2460–2466. https://doi.org/10.1016/j.matpr.2021.10.430
  • Vinod, A., Vijay, R., & Singaravelu, D. L. (2018). ThermoMechanical characterization of Calotropis gigantea stem powder-filled jute fiber-reinforced epoxy composites. Journal of Natural Fibers, 15 (5), 648–657. https://doi.org/10.1080/15440478.2017.1354740
  • Vishnu Vardhini, K., Murugan, R., & Surjit, R. (2018). Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites. Journal of Industrial Textiles, 47 (7), 1849–1864. https://doi.org/10.1177/1528083717714479
  • Wang, Y., Wang, Y., Wan, B., Han, B., Cai, G., & Chang, R. (2018). Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension. Composites Part A: Applied Science and Manufacturing, 113, 40–52. https://doi.org/10.1016/j.compositesa.2018.07.017
  • Wang, X., Zhao, X., Chen, S., & Wu, Z. (2020). Static and fatigue behavior of basalt fiber-reinforced thermoplastic epoxy composites. Journal of Composite Materials., 54(18), 2389–2398. https://doi.org/10.1177/0021998319896842
  • Wei, B., Song, S., & Cao, H. (2011). Strengthening of basalt fibers with nano-SiO2–epoxy composite coating. Materials and Design., 32(8–9), 4180–4186. https://doi.org/10.1016/j.matdes.2011.04.041
  • Wei, C., Zhou, Q., Deng, K., Lin, Y., Wang, L., Luo, Y., Zhang, Y., & Zhou, H. (2024). Alkali resistance prediction and degradation mechanism of basalt fiber: Integrated with artificial neural network machine learning model. Journal of Building Engineering, 86, 108850. https://doi.org/10.1016/j.jobe.2024.108850
  • Wu, C., Yang, K., Gu, Y., Xu, J., Ritchie, R. O., & Guan, J. (2019). Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites Part A: Applied Science and Manufacturing, 117, 357–368. https://doi.org/10.1016/j.compositesa.2018.12.003
  • Yang, Z., Liu, J., Wang, F., Li, S., & Feng, X. (2019). Effect of fiber hybridization on mechanical performances and impact behaviors of basalt fiber/UHMWPE fiber reinforced epoxy composites. Composite Structures., 229, 111434. https://doi.org/10.1016/j.compstruct.2019.111434