156
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Analyzing the key architectural and structural factors in the formation of tall timber projects in Europe

&
Article: 2348737 | Received 27 Feb 2024, Accepted 23 Apr 2024, Published online: 13 May 2024

References

  • Abdullah, S. N. C., Khalil, N., Haron, S. N., Hamid, M. Y., & Yan, Y. (2023). Unveiling the impact of sustainable interior design criteria on hotel’s operational performance effectiveness and user’s hedonic consumption. International Journal of Sustainable Construction Engineering and Technology, 14(3), 154–165. https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/15038 https://doi.org/10.30880/ijscet.2023.14.03.013
  • Ahn, N., Dodoo, A., Riggio, M., Muszynski, L., Schimleck, L., & Puettmann, M. (2022). Circular economy in mass timber construction: State-of-the-art, gaps and pressing research needs. Journal of Building Engineering, 53, 104562. https://doi.org/10.1016/j.jobe.2022.104562
  • Aloisio, A., Boggian, F., Tomasi, R., & Fragiacomo, M. (2021). The role of the hold-down in the capacity model of LTF and CLT shear walls based on the experimental lateral response. Construction and Building Materials, 289, 123046. https://doi.org/10.1016/j.conbuildmat.2021.123046
  • Ascione, F., Esposito, F., Iovane, G., Faiella, D., Faggiano, B., & Mele, E. (2024). Sustainable and efficient structural systems for tall buildings: exploring timber and steel–timber hybrids through a case study. Buildings, 14(2), 524. https://doi.org/10.3390/buildings14020524
  • Calder, K., Senez, P., & Mcphee, R. (2014). The risk basis for height and area limits in North American building codes. Proceedings of World Conference on Timber Engineering (WTCE) 2014, 10–14 August Canadian Wood Council. Ottawa, QC, Canada.
  • CTBUH. (2024). Council on tall buildings and urban habitat. Illinois Institute of Technology, S.R. Crown Hall. 3360 South State Street, Chicago, IL, USA. www.ctbuh.org.
  • Fink, G., Jockwer, R., Šušteršič, I., Stepinac, M., Palma, P., Bedon, C., Casagrande, D., Franke, S., D’Arenzo, G., Brandon, D., & Viau, C. (2023 holistic design of taller timber buildings–cost action helen (CA20139) [Paper presentation]. In World Conference on Timber Engineering, (pp. 1001–1008). World Conference on Timber Engineering (WCTE).
  • Foster, R. M., & Ramage, M. H. (2020). Tall timber. In Nonconventional and vernacular construction materials (pp. 467–490). Sawston, United Kingdom: Woodhead Publishing.
  • Gao, C., Li, S., Sun, M., Zhao, X., & Liu, D. (2024). Exploring the relationship between urban vibrancy and built environment using multi-source data: Case study in Munich. Remote Sensing, 16(6), 1107. https://doi.org/10.3390/rs16061107
  • González-Retamal, M., Forcael, E., Saelzer-Fuica, G., & Vargas-Mosqueda, M. (2022). From trees to skyscrapers: Holistic review of the advances and limitations of multi-story timber buildings. Buildings, 12(8), 1263. https://doi.org/10.3390/buildings12081263
  • Holt, R., & Wardle, K. (2014). Lessons from tall wood buildings: what we learned from ten international example. Perkins + Will Research Journal, 6(2), 7–19. https://www.brikbase.org/sites/default/files/PWRJ_Vol0602_01_Lessons_from_Tall_Wood_Buildings.pdf.
  • Ilgın, H. E. (2021a). Space efficiency in contemporary supertall Office buildings. Journal of Architectural Engineering, 27(3), 00486. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000486
  • Ilgın, H. E. (2021b). Space efficiency in contemporary supertall residential buildings. Architecture, 1(1), 25–37. https://doi.org/10.3390/architecture1010004
  • Ilgın, H. E. (2023a). A study on space efficiency in contemporary supertall mixed-use buildings. Journal of Building Engineering, 69, 106223. https://doi.org/10.1016/j.jobe.2023.106223
  • Ilgın, H. E. (2023b). Space efficiency in tapered super-tall towers. Buildings, 13(11), 2819. https://doi.org/10.3390/buildings13112819
  • Ilgın, H. E., Ay, B. Ö., & Gunel, M. H. (2021). A study on main architectural and structural design considerations of contemporary supertall buildings. Architectural Science Review, 64(3), 212–224. https://doi.org/10.1080/00038628.2020.1753010
  • Ilgın, H. E., Karjalainen, M., & Pelsmakers, S. (2023). Contemporary tall residential timber buildings: what are the main architectural and structural design considerations? International Journal of Building Pathology and Adaptation, 41(6), 26–46.https://doi.org/10.1108/IJBPA-10-2021-0142
  • Kuzmanovska, I., Gasparri, E., Monne, D. T., & Aitchison, M. (2018). Tall timber buildings: emerging trends and typologies. Proceedings of the 2018 World Conference on Timber Engineering (WCTE 2018), Seoul, August 2018, 20–23.
  • Larsson, C., Abdeljaber, O., Bolmsvik, Å., & Dorn, M. (2022). Long-term analysis of the environmental effects on the global dynamic properties of a hybrid timber-concrete building. Engineering Structures, 268, 114726. https://doi.org/10.1016/j.engstruct.2022.114726
  • Laboy, M. M. (2022). Reimagining low-carbon futures: architectural and ecological tradeoffs of mass timber for durable buildings. Architecture, Structures and Construction, 2(4), 723–741. https://doi.org/10.1007/s44150-022-00048-7
  • Li, S., Shao, Y., Hong, M., Zhu, C., Dong, B., Li, Y., Lin, Y., Wang, K., Gan, M., Zhu, J., Zhang, L., Lin, N., & Zhang, J. (2023). Impact mechanisms of urbanization processes on supply-demand matches of cultivated land multifunction in rapid urbanization areas. Habitat International, 131, 102726. https://doi.org/10.1016/j.habitatint.2022.102726
  • Meena, C. S., Kumar, A., Jain, S., Rehman, A. U., Mishra, S., Sharma, N. K., Bajaj, M., Shafiq, M., & Eldin, E. T. (2022). Innovation in green building sector for sustainable future. Energies, 15(18), 6631. https://doi.org/10.3390/en15186631
  • Millaniyage, K. P., Kotlarewski, N., Wallis, L., & Taoum, A. T. (2024). Engineered flooring from low-density plantation hardwood: Evaluation of long-term in-service trials. Wood and Fiber Science, 56(1), 24–42. https://doi.org/10.22382/wfs-2024-03
  • Morales-Beltran, M., Engür, P., Şişman, Ö. A., & Aykar, G. N. (2023). Redesigning for disassembly and carbon footprint reduction: Shifting from reinforced concrete to hybrid timber–steel multi-story building. Sustainability, 15(9), 7273. https://doi.org/10.3390/su15097273
  • Nguyen, T. D. H. N., Jeong, J., Ahn, Y., & Shin, H. (2023). An innovative approach to temporary educational facilities: A case study of relocatable modular school in South Korea. Journal of Building Engineering, 76, 107097. https://doi.org/10.1016/j.jobe.2023.107097
  • Ojala, A., Kostensalo, J., Viik, J., Matilainen, H., Wik, I., Virtanen, L., & Muilu-Mäkelä, R. (2023). Psychological and physiological effects of a wooden office room on human well-being: Results from a randomized controlled trial. Journal of Environmental Psychology, 89, 102059. https://doi.org/10.1016/j.jenvp.2023.102059
  • Oldfield, P., & Doherty, B. (2019). Offset cores: Trends, drivers and frequency in tall buildings. CTBUH Journal, 2019 (II):, 40–45.
  • Perkins + Will. (2014). Survey of International Tall Buildings, Summary Report, Forestry Innovations Investment and Binational Softwood Lumber Council, 2014. https://www.woodworks.org/wp-content/uploads/Survey-tall-wood-report.pdf.
  • Rahko, J., & Alola, A. A. (2024). Examining green productivity amidst climate change technological development and spillovers in the Nordic economies. Journal of Cleaner Production, 434, 140028. https://doi.org/10.1016/j.jclepro.2023.140028
  • Safarik, D., Elbrecht, J., & Miranda, W. (2022). State of tall timber 2022. CTBUH Journal, 2022(I), 22–31.
  • Saleh, M. M. A., Jawabreh, O. A., Al-Amro, S. A. H., & Saleh, H. M. I. (2023). Requirements for enhancing the standard of accounting education and its alignment with labor market requirements a case study hospitality and industrial sector in Jordan. Journal of Sustainable Finance & Investment, 13(1), 176–193. https://doi.org/10.1080/20430795.2021.1891781
  • Salman, K., Kim, D., Maher, A., & Latif, A. (2020). Optimal control on structural response using outrigger braced frame system under lateral loads. Journal of Structural Integrity and Maintenance, 5(1), 40–50. https://doi.org/10.1080/24705314.2019.1701799
  • Salvadori, V. (2021). Multi-story timber-based buildings: An international survey of case-studies with five or more storys over the last twenty years, doctoral dissertation, Technische Universität Wien: Vienna, Austria.
  • Santana-Sosa, A., & Kovacic, I. (2022). Barriers, opportunities and recommendations to enhance the adoption of timber within multi-story buildings in Austria. Buildings, 12(9), 1416. https://doi.org/10.3390/buildings12091416
  • Scaramozzino, D., Lacidogna, G., & Carpinteri, A. (2020). New trends towards enhanced structural efficiency and aesthetic potential in tall buildings: the case of diagrids. Applied Sciences, 10(11), 3917. https://doi.org/10.3390/app10113917
  • Sciomenta, M., Paoletti, A., & Stamopoulos, A. G. (2024). Experimental investigation of the mode I fracture toughness behaviour of timber adhesive joints: The synergistic effect of the adhesive type and the bondline thickness. International Journal of Adhesion and Adhesives, 130, 103652. https://doi.org/10.1016/j.ijadhadh.2024.103652
  • Shahbazi, Y., Ghofrani, M., & Pedrammehr, S. (2023). Aesthetic assessment of free-form space structures using machine learning based on the expert’s experiences. Buildings, 13(10), 2508. https://doi.org/10.3390/buildings13102508
  • Smith, R. E., Griffin, G., & Rice, T. (2015). Solid timber construction, process practice performance, Report sponsored by American Institute of Architects, USDA Forest Products Laboratory and FPI Innovations, Available at: https://wood-works.ca/wp-content/uploads/Mass-Timber-Costing- Case-Studies.pdf.
  • Smith, I., & Frangi, A. (2008). Overview of design issues for tall timber buildings. Structural Engineering International,). 18(2), 141–147. https://doi.org/10.2749/101686608784218833
  • Svatoš-Ražnjević, H., Orozco, L., & Achim, M. (2022). Advanced timber construction industry: A review of 350 multi-story timber projects from 2000–2021. Buildings, 12(4), 404. https://doi.org/10.3390/buildings12040404
  • Tulebekova, S., Malo, K. A., Rønnquist, A., & Nåvik, P. (2022). Modeling stiffness of connections and non-structural elements for dynamic response of taller glulam timber frame buildings. Engineering Structures, 261, 114209. https://doi.org/10.1016/j.engstruct.2022.114209
  • Tupenaite, L., Kanapeckiene, L., Naimaviciene, J., Kaklauskas, A., & Gecys, T. (2023). Timber construction as a solution to climate change: A systematic literature review. Buildings, 13(4), 976. https://doi.org/10.3390/buildings13040976
  • Tupėnaitė, L., Žilėnaitė, V., Kanapeckienė, L., Sajjadian, S. M., Gečys, T., Sakalauskienė, L., & Naimavičienė, J. (2019). Multiple criteria assessment of high-rise timber buildings. Engineering Structures and Technologies, 11(3), 87–94. https://doi.org/10.3846/est.2019.11952
  • Tuure, A., & Ilgın, H. E. (2023). Space efficiency in Finnish mid-rise timber apartment buildings. Buildings, 13(8), 2094. https://doi.org/10.3390/buildings13082094
  • Wang, W. (2020). Research on seismic design of high-rise buildings based on framed-shear structural system. Frontiers Research of Architecture and Engineering, 3(3), 87–90. https://doi.org/10.30564/frae.v3i3.2670
  • Wang, M., Nagarajaiah, S., & Sun, F. F. (2020). Dynamic characteristics and responses of damped outrigger tall buildings using negative stiffness. Journal of Structural Engineering, 146(12), 04020273. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002846
  • Wang, P., Yang, Y., Ji, C., & Huang, L. (2024). Influence of built environment on building energy consumption: a case study in Nanjing, China. Environment, Development and Sustainability, 26(2), 1–24. https://doi.org/10.1007/s10668-023-02930-w
  • Wood. (2017). Wood solutions technical design guide issued by FWPA, Mid-rise timber buildings, class 2, 3 and 5 buildings. https://www.woodsolutions.com.au/publications.
  • Zahiri, N. (2023). Timber high-rises in Nordic countries: Current trends. CTBUH J. 44–50. https://www.proquest.com/openview/18bd24c28e7b2ef07815ea4e8423a3b6/1?pq-origsite=gscholar&cbl=6578554.
  • Žegarac Leskovar, V., & Premrov, M. (2021). A review of architectural and structural design typologies of multi-story timber buildings in Europe. Forests, 12(6), 757. https://doi.org/10.3390/f12060757
  • Zhang, X., Xuan, L., Huang, W., Yuan, L., & Li, P. (2022). Structural design and analysis for a timber-concrete hybrid building. Frontiers in Materials, 9, 844398. https://doi.org/10.3389/fmats.2022.844398
  • Zhou, K., & Li, Q. S. (2022). Vibration mitigation performance of active tuned mass damper in a super high-rise building during multiple tropical storms. Engineering Structures, 269, 114840. https://doi.org/10.1016/j.engstruct.2022.114840