637
Views
0
CrossRef citations to date
0
Altmetric
FOOD SCIENCE & TECHNOLOGY

Eucalyptus globulus Labill. Mediated synthesis of ZnO nanoparticles, their Optimization and characterization

, , , ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Article: 2293332 | Received 30 May 2023, Accepted 06 Dec 2023, Published online: 15 Dec 2023

References

  • Ahmad, H., Venugopal, K., Rajagopal, K., De Britto, S., Nandini, B., Pushpalatha, H. G., Konappa, N., Udayashankar, A. C., Geetha, N., & Jogaiah, S. (2020). Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globules and their fungicidal ability against pathogenic fungi of apple orchards. Biomolecules, 10(3), 425. https://doi.org/10.3390/biom10030425
  • Alamdari, S., Sasani Ghamsari, M., Lee, C., Han, W., Park, H. H., Tafreshi, M. J., Afarideh, H., & Ara, M. H. M. (2020a). Preparation and Characterization of Zinc Oxide 52 Nanoparticles Using Leaf Extract of Sambucus ebulus. Applied Sciences, 10(10), 3620. https://doi.org/10.3390/app10103620
  • Alamdari, S., Sasani Ghamsari, M., Lee, C., Han, W., Park, H. H., Tafreshi, M. J., Afarideh, H., & Ara, M. H. M. (2020b). Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Applied Sciences, 10(10), 3620. https://doi.org/10.3390/app10103620
  • Alyamani, A. A., Albukhaty, S., Aloufi, S., AlMalki, F. A., Al-Karagoly, H., & Sulaiman, G. M. (2021). Green fabrication of zinc oxide nanoparticles using phlomis leaf extract: characterization and in vitro evaluation of cytotoxicity and antibacterial properties. Molecules, 26(20), 6140. https://doi.org/10.3390/molecules26206140
  • Ananthi, S., Kavitha, M., Balamurugan, A., Kumar, E. R., Magesh, G., Abd El-Rehim, A. F., Rahale, C. S., Suryakanth, J., Sharmila Rahale, C., & Srinivas, C. (2023). Synthesis, analysis and characterization of camellia sinensis mediated synthesis of NiO nanoparticles for ethanol gas sensor applications. Sensors and Actuators B: Chemical, 387, 133742. https://doi.org/10.1016/j.snb.2023.133742
  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 25(1), 112. https://doi.org/10.3390/molecules25010112
  • Borysiewicz, M. A. (2019). ZnO as a functional material, a review. Crystals, 9(10), 505. https://doi.org/10.3390/cryst9100505
  • Chabattula, S. C., Gupta, P. K., Tripathi, S. K., Gahtori, R., Padhi, P., Mahapatra, S., Biswal, B. K., Singh, S. K., Dua, K., Ruokolainen, J., Mishra, Y. K., Jha, N. K., Bishi, D. K., & Kesari, K. K. (2021). Anticancer therapeutic efficacy of biogenic am-ZnO nanoparticles on 2D and 3D tumor models. Materials Today Chemistry, 22, 100618. https://doi.org/10.1016/j.mtchem.2021.100618
  • Ealia, S. A. M., & Saravanakumar, M. P. (2017, November). A review on the classification, characterisation, synthesis of nanoparticles and their application. Proceedings of the IOP conference series: materials science and engineering, Ukrain (Vol. 263, p. 032019). IOP Publishing.
  • Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Rizwan, M., Jan, F., Wajidullah, Akhtar, N., & Syed, S. (2021). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega, 6(14), 9709–23. https://doi.org/10.1021/acsomega.1c00310
  • Faisal, S., Khan, M. A., Jan, H., Shah, S. A., Rizwan, S., Shah, M., Akbar, M. T., Akbar, M. T. (2020). Edible mushroom (flammulina velutipes) as biosource for silver nanoparticles: From synthesis to diverse biomedical and environmental applications. Nanotechnology, 32(6), 065101. https://doi.org/10.1088/1361-6528/abc2eb
  • Gancheva, M., Markova-Velichkova, M., Atanasova, G., Kovacheva, D., Uzunov, I., & Cukeva, R. (2016). Design and photocatalytic activity of nanosized zinc oxides. Applied Surface Science, 368, 258–266. https://doi.org/10.1016/j.apsusc.2016.01.211
  • Gouws, C., & Hamman, J. H. (2020). What are the dangers of drug interactions with herbal medicines? Expert Opinion on Drug Metabolism & Toxicology, 16(3), 165–167. https://doi.org/10.1080/17425255.2020.1733969
  • Iqtedar, M., Riaz, H., Kaleem, A., Abdullah, R., Aihetasham, A., Naz, S., & Sharif, S. (2020). Biosynthesis, optimization and characterization of ZnO nanoparticles using Bacillus cereus MN181367 and their antimicrobial activity against multidrug resistant bacteria. Revista Mexicana de Ingeniería Química, 19(Sup. 1), 253–266. https://doi.org/10.24275/rmiq/Bio1605
  • Jadoun, S., Arif, R., Jangid, N. K., & Meena, R. K. (2021). Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters, 19(1), 355–374. https://doi.org/10.1007/s10311-020-01074-x
  • Jan, H., Khan, M. A., Usman, H., Shah, M., Ansir, R., Faisal, S., Ullah, N., & Rahman, L. (2020). The aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Advances, 10(33), 19219–19231. https://doi.org/10.1039/D0RA01971B
  • Jo, I., Bellingham, P. J., McCarthy, J. K., Easdale, T. A., Padamsee, M., Wiser, S. K., & Richardson, S. J. (2022). Ecological importance of the Myrtaceae in New Zealand’s natural forests. Journal of Vegetation Science, 33(1), e13106. https://doi.org/10.1111/jvs.13106
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., & Lee, D. S. (2011). Antibacterial activity of silver-nanoparticles against staphylococcus aureus and Escherichia coli. Microbiology and Biotechnology Letters, 39(1), 77–85.
  • Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. T. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 95–99. https://doi.org/10.1016/j.saa.2012.03.002
  • Mahmood Ansari, S., Saquib, Q., De Matteis, V., Awad Alwathnani, H., Ali Alharbi, S., Ali Al-Khedhairy, A., & Mendoza-Diaz, G. (2021). Marine macroalgae display bioreductant efficacy for fabricating metallic nanoparticles: intra/extracellular mechanism and potential biomedical applications. Bioinorganic Chemistry and Applications, 2021, 1–26. https://doi.org/10.1155/2021/5985377
  • Narayana, A., Bhat, S. A., Fathima, A., Lokesh, S. V., Surya, S. G., & Yelamaggad, C. V. (2020). Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Advances, 10(23), 13532–13542. https://doi.org/10.1039/D0RA00478B
  • Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Masum, M. M. I., Hossain, A., Mo, J., & Li, B. (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against xanthomonas oryzae pv. oryzae. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 341–352. https://doi.org/10.1080/21691401.2018.1557671
  • Ossai, A. N., Ezike, S. C., & Dikko, A. B. (2020). Bio-synthesis of zinc oxide nanoparticles from bitter leaf (vernonia amygdalina) extract for dye-sensitized solar cell fabrication. Journal of Materials and Environmental Science, 11(3), 421–428.
  • Osuntokun, J., Onwudiwe, D. C., & Ebenso, E. E. (2019). Green synthesis of ZnO nanoparticles using aqueous brassica oleracea L. var. italica and the photocatalytic activity. Green Chemistry Letters and Reviews, 12(4), 444–457. https://doi.org/10.1080/17518253.2019.1687761
  • Parra, M. R., & Haque, F. Z. (2014). Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. Journal of Materials Research and Technology, 3(4), 363–369. https://doi.org/10.1016/j.jmrt.2014.07.001
  • Patra, J. K., & Baek, K. H. (2015). Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 219–219. https://doi.org/10.1155/2014/417305
  • Paul, C. A., Kumar, E. R., Suryakanth, J., & Abd El-Rehim, A. F. (2023). Structural, microstructural, vibrational, and thermal investigations of NiO nanoparticles for biomedical applications. Ceramics International, 49(16), 27230–27246. https://doi.org/10.1016/j.ceramint.2023.05.273
  • Poonguzhali, R. V., Kumar, E. R., Arunadevi, N., Srinivas, C., Khalifa, M. E., Abu-Melha, S., & El-Metwaly, N. M. (2022). Natural citric acid assisted synthesis of CuO nanoparticles: Evaluation of structural, optical, morphological properties and colloidal stability for gas sensor applications. Ceramics International, 48(18), 26287–26293. https://doi.org/10.1016/j.ceramint.2022.05.311
  • Qu, J., Yuan, X., Wang, X., & Shao, P. (2011). Zinc accumulation and synthesis of ZnO nanoparticles using physalis alkekengi L. Environmental Pollution, 159(7), 1783–1788. https://doi.org/10.1016/j.envpol.2011.04.016
  • Rafiee, B., Ghani, S., Sadeghi, D., & Ahsani, M. (2018). Green synthesis of Zinc Oxide Nanoparticles Using Eucalyptus Mellidora Leaf Extract and Evaluation of its Antimicrobial Effects. Journal of Babol University of Medical Sciences, 20(10), 28–35.
  • Ramesh, M., Anbuvannan, M., & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 864–870. https://doi.org/10.1016/j.saa.2014.09.105
  • Rana, A., Yadav, K., & Jagadevan, S. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, 122880. https://doi.org/10.1016/j.jclepro.2020.122880
  • Sabo, V. A., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products, 132, 413–429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • Selim, Y. A., Azb, M. A., Ragab, I., & Abd El-Azim, M. H. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-60541-1
  • Siripireddy, B., & Mandal, B. K. (2017). Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Advanced Powder Technology, 28(3), 785–797. https://doi.org/10.1016/j.apt.2016.11.026
  • Song, Z., Kelf, T. A., Sanchez, W. H., Roberts, M. S., Rička, J., Frenz, M., & Zvyagin, A. V. (2011). Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express, 2(12), 3321–3333. https://doi.org/10.1364/BOE.2.003321
  • Song, J. Y., Kwon, E. Y., & Kim, B. S. (2010). Biological synthesis of platinum nanoparticles using diopyros kaki leaf extract. Bioprocess and Biosystems Engineering, 33(1), 159. https://doi.org/10.1007/s00449-009-0373-2
  • Stanciu, G. D., Luca, A., Rusu, R. N., Bild, V., Beschea Chiriac, S. I., Solcan, C., Bild, W., & Ababei, D. C. (2019). Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules, 10(1), 40. https://doi.org/10.3390/biom10010040
  • Subramaniam, V. D., Prasad, S. V., Banerjee, A., Gopinath, M., Murugesan, R., Marotta, F., Sun, X. F., & Pathak, S. (2019). Health hazards of nanoparticles: Understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug and Chemical Toxicology, 42(1), 84–93. https://doi.org/10.1080/01480545.2018.1491987
  • Suresh, K. C., Surendhiran, S., Manoj Kumar, P., Ranjth Kumar, E., Khadar, Y. S., & Balamurugan, A. (2020). Green synthesis of SnO 2 nanoparticles using delonix elata leaf extract: Evaluation of its structural, optical, morphological and photocatalytic properties. SN Applied Sciences, 2(10), 1–13. https://doi.org/10.1007/s42452-020-03534-z
  • Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. International Scholarly Research Notices, 2012, 1–6. https://doi.org/10.5402/2012/372505
  • Verma, A., Gautam, S. P., Bansal, K. K., Prabhakar, N., & Rosenholm, J. M. (2019). Green nanotechnology: Advancement in phytoformulation research. Medicines, 6(1), 39. https://doi.org/10.3390/medicines6010039
  • Vidya, C., Hiremath, S., Chandraprabha, M. N., Antonyraj, M. L., Gopal, I. V., Jain, A., & Bansal, K. (2013). Green synthesis of ZnO nanoparticles by calotropis gigantea. Int J Curr Eng Technol, 1(1), 118–120.
  • Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336