2,865
Views
0
CrossRef citations to date
0
Altmetric
SOIL & CROP SCIENCES

A review of the carbon sequestration potential of fruit trees and their implications for climate change mitigation: The case of Ethiopia

ORCID Icon &
Article: 2294544 | Received 12 May 2023, Accepted 10 Dec 2023, Published online: 08 Jan 2024

References

  • Abbas, S. (2022). Climate change and major crop production: Evidence from Pakistan. Environmental Science and Pollution Research, 29(4), 5406–16. https://doi.org/10.1007/s11356-021-16041-4
  • Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  • Aboelata, A., & Sodoudi, S. (2019). Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings’ energy in dense built-up areas in Cairo. Building and Environment, 166, 106407. https://doi.org/10.1016/j.buildenv.2019.106407
  • Aiyeloja, A. (2013). Forest: Nature at your service. Journal of Agriculture, Socioeconomics and Sustainable Environment, 35–45. https://d1wqtxts1xzle7.cloudfront.net/36415367/Forest_Nature_at_your_Service._Aiyeloja__A.A._Ph.D-libre.pdf?1422368294=&response-content-disposition=inline%3B+filename%3DFORESTS_NATURE_AT_YOUR_SERVICE.pdf&Expires=1702388131&Signature=JhR3tgF2XWPYvzcj4cSDHBNjrACt9WaRQvDxtnAB5IrFGPWYRXqPlSSQsPmS1nPSbYJu2yTqXkgLrAklCERfPK4YUPd0byF7Cz5XbR-4C96OVPMs6neLdYvTE4IcYRDbZi60aAEp0pWOl1ZOnuPllsjTgXH7R39OaaUKVNUjL3lfehlTXsyfIDg4jGd7bwzs~3iwxkDVjN4U2KRbXVTWI5XKjw0S6xBwLkIwRDsezN0DALP4RPeRNWTJwq~B0hi48n13l6hZu9FdDw--SWs7sfxSMflt9aGDvi078e84eHlEXVGnh~eXzgUdjx3LaG-HY4ipp6~nV-C-maEfvgkdFw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.
  • Ajonina, G., Kairo, J., Grimsditch, G., Sembres, T., Chuyong, G., Mibog, D., Nyambane, A., FitzGerald, C., & Marine, K. (2014). Carbon pools and multiple benefits of mangroves in central Africa. Assessment for REDD+.
  • Akbari, H. (2009) Cooling our communities. A guidebook on tree planting and light-colored surfacing.
  • Altieri, M. A., & Koohafkan, P. (2008) Enduring farms: Climate change, smallholders and traditional farming communities Third World Network (TWN) Penang.
  • Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger reserve, India. Journal of Cleaner Production, 278, 123333. https://doi.org/10.1016/j.jclepro.2020.123333
  • Bayu, T. (2022) Building-green space integration modeling for net-zero micro climate change in residential unit: In the case of Debre Birhan.
  • Berhe, A. A., Harden, J. W., Torn, M. S., & Harte, J. (2008). Linking soil organic matter dynamics and erosion‐induced terrestrial carbon sequestration at different landform positions. Journal of Geophysical Research: Biogeosciences, 113(G4), 113. https://doi.org/10.1029/2008JG000751
  • Bhattacharyya, S. S., Ros, G. H., Furtak, K., Iqbal, H. M., & Parra-Saldívar, R. (2022). Soil carbon sequestration–an interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment, 815, 152928. https://doi.org/10.1016/j.scitotenv.2022.152928
  • Blanco-Canqui, H. (2013). Crop residue removal for bioenergy reduces soil carbon pools: How can we offset carbon losses? Bio Energy Research, 6(1), 358–371. https://doi.org/10.1007/s12155-012-9221-3
  • Bogale, G. A., & Erena, Z. B. (2022). Drought vulnerability and impacts of climate change on livestock production and productivity in different agro-Ecological zones of Ethiopia. Journal of Applied Animal Research, 50(1), 471–489. https://doi.org/10.1080/09712119.2022.2103563
  • Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29(2), 293–301. https://doi.org/10.1016/S0921-8009(99)00013-0
  • Carlo, T. A., Collazo, J. A., & Groom, M. J. (2004). Influences of fruit diversity and abundance on bird use of two shaded coffee plantations. Biotropica, 36(4), 602–614. https://doi.org/10.1111/j.1744-7429.2004.tb00354.x
  • Chakravarty, S., Pala, N. A., Tamang, B., Sarkar, B. C., Manohar, K. A., Rai, P., Puri, A., & Shukla, G. (2019). Ecosystem services of trees outside forest. Sustainable Agriculture, Forest and Environmental Management, 327–352. https://link.springer.com/chapter/10.1007/978-981-13-6830-1_10
  • Chatterjee, N., Nair, P. R., Nair, V. D., Bhattacharjee, A., Filho, E. D. M. V., Muschler, R. G., & Noponen, M. R. (2019). Do coffee agroforestry systems always improve soil carbon stocks deeper in the soil?—A case study from Turrialba, Costa Rica. Forests, 11(1), 49. https://doi.org/10.3390/f11010049
  • Chavan, B., & Rasal, G. (2012). Total sequestered carbon stock of Mangifera indica. Journal of Environment & Earth Science, 2(1). .
  • Choinova, V. (2023) Identifying data for horticulture categories to propose a standard carbon footprint model.
  • Cooper, C. D., & Alley, F. C. (2010) Air pollution control: A design approach Waveland press.
  • Dagar, J., & Yadav, R. (2017). Climate resilient approaches for enhancing productivity of saline agriculture. Journal of Soil Salinity and Water Quality, 9(1), 9–29.
  • Davis, V. (2023). Impact of climate changes on agriculture and livestock. International Journal of Climatic Studies, 2(1), 28–39. https://doi.org/10.47604/ijcs.1829
  • De Groot, R. S., Wilson, M. A., & Boumans, R. M. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7
  • Deressa, T., Hassan, R. M., & Ringler, C. (2008) Measuring Ethiopian farmers’ vulnerability to climate change across regional states Intl food policy res inst.
  • Dibaba, A., Soromessa, T., & Workineh, B. (2019). Carbon stock of the various carbon pools in Gerba-Dima moist afromontane forest, South-western Ethiopia. Carbon Balance and Management, 14(1), 1–10. https://doi.org/10.1186/s13021-019-0116-x
  • Di Matteo, G., Luzzi, G., Basile, A., Sposato, A., Bertini, G., Neri, U., Pennelli, B., Napoli, R., & Nardi, P. (2023). Carbon concentrations and carbon storage capacity of three old-growth forests in the Sila National Park, Southern Italy. Journal of Forestry Research, 34(1), 233–242. https://doi.org/10.1007/s11676-022-01549-3
  • Dong, X., Hao, Q., Li, G., Lin, Q., & Zhao, X. (2017). Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. Journal of Soils and Sediments, 17(4), 1054–1063. https://doi.org/10.1007/s11368-016-1615-y
  • Dongmo, C. (2022). Resilience to environmental challenges and the national disaster insurance program in Kenya. Energy Policy Advancement: Climate Change Mitigation and International Environmental Justice, 145–161. https://link.springer.com/chapter/10.1007/978-3-030-84993-1_7
  • Elbasiouny, H., El-Ramady, H., Elbehiry, F., Rajput, V. D., Minkina, T., & Mandzhieva, S. (2022). Plant nutrition under climate change and soil carbon sequestration. Sustainability, 14(2), 914. https://doi.org/10.3390/su14020914
  • Eshetu, E. Y., Hailu, T. A., & Tejada Moral, M. (2020). Carbon sequestration and elevational gradient: The case of Yegof mountain natural vegetation in North East, Ethiopia, implications for sustainable management. Cogent Food & Agriculture, 6(1), 1733331. https://doi.org/10.1080/23311932.2020.1733331
  • Eusterhues, K., Rumpel, C., Kleber, M., & Kögel-Knabner, I. (2003). Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Organic Geochemistry, 34(12), 1591–1600. https://doi.org/10.1016/j.orggeochem.2003.08.007
  • Feng, J., He, K., Zhang, Q., Han, M., & Zhu, B. (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28(10), 3426–3440. https://doi.org/10.1111/gcb.16107
  • Fikreyesus, D., Gizaw, S., Mayers, J., & Barrett, S. (2022) Mass tree planting: Prospects for a green legacy in Ethiopia.
  • Fotis, A. T., Murphy, S. J., Ricart, R. D., Krishnadas, M., Whitacre, J., Wenzel, J. W., Queenborough, S. A., Comita, L. S., & Hector, A. (2018). Above‐ground biomass is driven by mass‐ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 106(2), 561–570. https://doi.org/10.1111/1365-2745.12847
  • Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., Bates, N. R., Becker, M. … Zaehle, S. (2022). Global carbon budget 2021. Earth System Science Data, 14(4), 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
  • Ganeshamurthy, A., Ravindra, V., & Rupa, T. (2019). Carbon sequestration potential of mango orchards in India. Current Science, 117(12), 2006–2013. https://doi.org/10.18520/cs/v117/i12/2006-2013
  • Ganeshamurthy, A., Ravindra, V., Rupa, T., & Bhatt, R. (2019). Carbon sequestration potential of mango orchards in the tropical hot and humid climate of Konkan region, India. Current Science, 116(8), 1417–1423. https://doi.org/10.18520/cs/v116/i8/1417-1423
  • Gebeyehu, G., Soromessa, T., Bekele, T., & Teketay, D. (2019). Carbon stocks and factors affecting their storage in dry afromontane forests of Awi zone, northwestern Ethiopia. Journal of Ecology and Environment, 43(1), 1–18. https://doi.org/10.1186/s41610-019-0105-8
  • Gebre Mariam, S. (2003) Status of commercial fruit production in Ethiopia Ethiopian Agricultural Research Organization.
  • Godard, O. (2017). Justice and climate change: Data and proposals: Proposals, arguments and justification, global climate Justice. Edward Elgar Publishing.
  • Goswami, A., Krishna, M. M., Vankara, J., Gangadharan, S. M. P., Yadav, C. S., Kumar, M., Khan, M. M., & Doulamis, A. D. (2022). Sentiment analysis of statements on social media and electronic media using machine and deep learning classifiers. Computational Intelligence and Neuroscience 2022, 2022, 1–18. https://doi.org/10.1155/2022/9194031
  • Gressel, J. (2008). Transgenics are imperative for biofuel crops. Plant Science, 174(3), 246–263. https://doi.org/10.1016/j.plantsci.2007.11.009
  • Guidi Nissim, W., Castiglione, S., Guarino, F., Pastore, M. C., & Labra, M. (2023). Beyond cleansing: Ecosystem services related to phytoremediation. Plants, 12(5), 1031. https://doi.org/10.3390/plants12051031
  • Guimarães, D. V., Gonzaga, M. I., & Melo Neto, J. D. O. (2014). Manejo da matéria orgânica do solo e estoques de carbono em cultivos de frutas tropicais. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(3), 301–306. https://doi.org/10.1590/S1415-43662014000300009
  • Gunamantha, I., Sudiana, I., Sastrawidana, D., Suryaputra, I., & Oviantari, M. (2021). The evaluation of soil fertility status of open space in campus area and their suitability for tropical fruits production. Journal of Soil Science and Environmental Management, 12(2), 78–85. https://doi.org/10.5897/JSSEM2021.0872
  • Guyalo, A. K., Alemu, E. A., & Degaga, D. T. (2022). Impact of large-scale agricultural investments on the food security status of local community in Gambella region, Ethiopia. Agriculture & Food Security, 11(1), 1–28. https://doi.org/10.1186/s40066-022-00381-6
  • Harris, S. H., & Betts, M. G. (2023). Selecting among land sparing, sharing, and triad in a temperate rainforest depends on biodiversity and timber production targets. Journal of Applied Ecology, 60(4), 737–750. https://doi.org/10.1111/1365-2664.14385
  • Hundie, S. K. (2021). Income inequality, economic growth and carbon dioxide emissions nexus: Empirical evidence from Ethiopia. Environmental Science and Pollution Research, 28(32), 43579–43598. https://doi.org/10.1007/s11356-021-13341-7
  • Hurd, C. L., Law, C. S., Bach, L. T., Britton, D., Hovenden, M., Paine, E. R., Raven, J. A., Tamsitt, V., & Boyd, P. W. (2022). Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 58(3), 347–363. https://doi.org/10.1111/jpy.13249
  • Jakšić, S., Ninkov, J., Milić, S., Vasin, J., Živanov, M., Jakšić, D., & Komlen, V. (2021). Influence of slope gradient and aspect on soil organic carbon content in the region of Niš, Serbia. Sustainability, 13(15), 8332. https://doi.org/10.3390/su13158332
  • Janiola, M. D. C., & Marin, R. A. (2016). Carbon sequestration potential of fruit tree plantations in southern Philippines. Journal of Biodiversity and Environmental Science, 8(5), 164–174. 2220-6663.
  • Jayathilake, H. M., Warren-Thomas, E., Nelson, L., Dolman, P., Bumrungsri, S., Juthong, W., Carrasco, L. R., & Edwards, D. P. (2021). Fruit trees and herbaceous plants increase functional and phylogenetic diversity of birds in smallholder rubber plantations. Biological Conservation, 257, 109140. https://doi.org/10.1016/j.biocon.2021.109140
  • Jerikias, M., & Zakio, M. (2022). Climate change mitigation: In Situ management methods of indigenous fruit trees in chivi communal area, Masvingo Province, Zimbabwe, climate change adaptations in dryland Agriculture in semi-arid areas. Springer.
  • Kassahun, K., Soromessa, T., & Belliethathan, S. (2015) Forest carbon stock in woody plants of Ades forest, Western Hararghe zone of Ethiopia and its variation along environmental factors: Implication for climate change mitigation. Forest 5.
  • Kongsager, R., Napier, J., & Mertz, O. (2013). The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change, 18(8), 1197–1213. https://doi.org/10.1007/s11027-012-9417-z
  • Kumar, B. M., & Kunhamu, T. (2021). Carbon sequestration potential of agroforestry systems in India: A synthesis. Agroforestry and Ecosystem Services, 389–430. https://link.springer.com/chapter/10.1007/978-3-030-80060-4_15
  • Lakso, A., Wunsche, J., Palmer, J., & Corelli Grappadelli, L. (1999). Measurement and modeling of carbon balance of the apple tree. HortScience, 34(6), 1040. https://doi.org/10.21273/HORTSCI.34.6.1040
  • Lal, R. (2023). Farming systems to return land for nature: It’s all about soil health and re-carbonization of the terrestrial biosphere. Farming System, 1, 100002. https://doi.org/10.1016/j.farsys.2023.100002
  • Lyashenko, S., Gorbenko, O., Kelemesh, A., Kalinichenko, A., Stebila, J., & Patyka, V. (2022). Non-waste technology for utilization of tree branches. Applied Sciences, 12(17), 8871. https://doi.org/10.3390/app12178871
  • Maleki, B. A. (2011). Shading: Passive cooling and energy conservation in buildings. International Journal on Technical and Physical Problems of Engineering (IJTPE), 3, 72–79.
  • Manilay, A., Barbon, W. J., Cabriole, M. A., Myae, C., Thant, P. S., Gummadi, S., Monville-Oro, E., & Gonsalves, J. F. (2021) Financial and environmental benefits from fruit trees in Myanmar’s central dry zone: Case study from htee pu climate Smart village.
  • Mathew, I., Shimelis, H., Mutema, M., Minasny, B., & Chaplot, V. (2020). Crops for increasing soil organic carbon stocks–A global meta analysis. Geoderma, 367, 114230. https://doi.org/10.1016/j.geoderma.2020.114230
  • Mayer, M., Krause, H.-M., Fliessbach, A., Mäder, P., & Steffens, M. (2022). Fertilizer quality and labile soil organic matter fractions are vital for organic carbon sequestration in temperate arable soils within a long-term trial in Switzerland. Geoderma, 426, 116080. https://doi.org/10.1016/j.geoderma.2022.116080
  • Melke, A., & Fetene, M. (2014). Apples (Malus domestica, Borkh.) phenology in Ethiopian highlands: Plant growth, blooming, fruit development and fruit quality perspectives. American Journal of Experimental Agriculture, 4(12), 1958. https://doi.org/10.9734/AJEA/2014/9783
  • Mengesha Tadesse, M. (2023). Impact of climate change on crop and irrigation water requirement: The case of lake ziway catchment. Haramaya University.
  • Mengistu, B., & Asfaw, Z. (2017). Comparative assessment of soil organic carbon stock potential under agroforestry practices and other land uses in lowlands of bale. International Journal of Environment, 6(3), 1–14. https://doi.org/10.3126/ije.v6i3.18094
  • Mewded, B., & Lemessa, D. (2020). Factors affecting woody carbon stock in Sirso moist evergreen afromontane forest, southern Ethiopia: Implications for climate change mitigation. Environment Development and Sustainability, 22(7), 6363–6378. https://doi.org/10.1007/s10668-019-00483-5
  • Meyfroidt, P., De Bremond, A., Ryan, C. M., Archer, E., Aspinall, R., Chhabra, A., Camara, G., Corbera, E., DeFries, R., & Díaz, S. (2022). Ten Facts about land systems for sustainability. Proceedings of the National Academy of Sciences, 119(7), e2109217118. https://doi.org/10.1073/pnas.2109217118
  • Mng’omba, S. A., & Beedy, T. (2013). Positioning fruit trees into climate change/variability scenarios: Opportunities and constraints in the placement of fruit tree species in payment for environmental services. Scientific Research and Essays, 8(28), 1343–1348. https://doi.org/10.5897/SREX10.010
  • Mohamed, A. A. (2017). Food security situation in Ethiopia: A review study. International Journal of Health Economics and Policy, 2, 86–96.
  • Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi‐year learning progression for carbon cycling in socio‐ecological systems. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 675–698. https://doi.org/10.1002/tea.20314
  • Momani, N., & Alzaghal, M. H. (2009). Early warning systems for disasters in Jordan: Current and future trends. Journal of Homeland Security and Emergency Management, 6(1). https://doi.org/10.2202/1547-7355.1663
  • Montes-Londoño, I. (2017). Tropical dry forests in multi-functional landscapes: Agroforestry systems for conservation and livelihoods. Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty, 47–78.
  • Niguse, G., Iticha, B., Kebede, G., & Chimdi, A. (2022). Contribution of coffee plants to carbon sequestration in agroforestry systems of Southwestern Ethiopia. The Journal of Agricultural Science, 160(6), 1–8. https://doi.org/10.1017/S0021859622000624
  • Olah, G. A., Goeppert, A., & Prakash, G. S. (2009). Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of Organic Chemistry, 74(2), 487–498. https://doi.org/10.1021/jo801260f
  • Oljirra, A. (2019). The causes, consequences and remedies of deforestation in Ethiopia. Journal of Degraded and Mining Lands Management, 6(3), 1747. https://doi.org/10.15243/jdmlm.2019.063.1747
  • Osabohien, R., Matthew, O., Gershon, O., Ogunbiyi, T., & Nwosu, E. (2019). Agriculture development, employment generation and poverty reduction in West Africa. The Open Agriculture Journal 13, 13(1), 82–89. https://doi.org/10.2174/1874331501913010082
  • Osberghaus, D., & Fugger, C. (2022). Natural disasters and climate change beliefs: The role of distance and prior beliefs. Global Environmental Change, 74, 102515. https://doi.org/10.1016/j.gloenvcha.2022.102515
  • Oviantari, M., Sudiana, I., Sastrawidana, I., Suryaputra, I., & Gunamantha, I. (2021). Contribution of tropical fruit plants and soil properties to the potential of carbon sequestration in Open land utilization for mixed plantations, 4th International Conference on Innovative Research Across Disciplines (ICIRAD 2021) (pp. 47–56). Atlantis Press.
  • Pandya, I. Y., Salvi, H., Chahar, O., & Vaghela, N. (2013). Quantitative analysis on carbon storage of 25 valuable tree species of Gujarat, incredible India. Indian Journal of Scientific Research, 4, 137–141.
  • Patil, P., & Kumar, A. K. (2017). Biological carbon sequestration through fruit crops (perennial crops-natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Archives, 17, 1041–1046.
  • Plénet, D., Borg, J., Barra, Q., Bussi, C., Gomez, L., Memah, M.-M., Lescourret, F., & Vercambre, G. (2022). Net primary production and carbon budget in peach orchards under conventional and low input management systems. The European Journal of Agronomy, 140, 126578. https://doi.org/10.1016/j.eja.2022.126578
  • Prasanna, D., & Selvaraj, V. (2016). Pt and pt-sn nanoparticles decorated conductive polymer-biowaste ash composite for direct methanol fuel cell. Korean Journal of Chemical Engineering, 33(4), 1489–1499. https://doi.org/10.1007/s11814-015-0245-1
  • Rahiel, H. A., Zenebe, A. K., Leake, G. W., & Gebremedhin, B. W. (2018). Assessment of production potential and post-harvest losses of fruits and vegetables in northern region of Ethiopia. Agriculture & Food Security, 7(1), 1–13. https://doi.org/10.1186/s40066-018-0181-5
  • Rahman, M. S., Huang, W.-C., Toiba, H., & Efani, A. (2022). Does adaptation to climate change promote household food security? Insights from Indonesian fishermen. International Journal of Sustainable Development & World Ecology, 29(7), 611–624. https://doi.org/10.1080/13504509.2022.2063433
  • Ramirez, F., & Kallarackal, J. (2015). Responses of fruit trees to global climate change. Springer.
  • Reicosky, D. (2003). Conservation agriculture: Global environmental benefits of soil carbon management. Conservation Agriculture: Environment, Farmers Experiences, Innovations, Socio-Economy, Policy, 3–12. https://link.springer.com/chapter/10.1007/978-94-017-1143-2_1
  • Reyes-Martín, M. P., Ortiz-Bernad, I., Lallena, A. M., San-Emeterio, L. M., Martínez-Cartas, M. L., & Ondoño, E. F. (2021). Reuse of pruning waste from subtropical fruit trees and urban gardens as a source of nutrients: Changes in the physical, chemical, and biological properties of the soil. Applied Sciences, 12(1), 193. https://doi.org/10.3390/app12010193
  • Roshetko, J. M., Delaney, M., Hairiah, K., & Purnomosidhi, P. (2002). Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? American Journal of Alternative Agriculture, 17(3), 138–148. https://doi.org/10.1079/AJAA200116
  • Salgueiro, L., Martins, A., & Correia, H. (2010). Raw materials: The importance of quality and safety. A review. Flavour and Fragrance Journal, 25(5), 253–271. https://doi.org/10.1002/ffj.1973
  • Scandellari, F., Caruso, G., Liguori, G., Meggio, F., Palese, M., Zanotelli, D., Celano, G., Gucci, R., Inglese, P., Pitacco, A., & Tagliavini, M. (2016). A survey of carbon sequestration potential of orchards and vineyards in Italy. European Journal of Horticultural Science, 81(2), 106–114. https://doi.org/10.17660/eJHS.2016/81.2.4
  • Seid, Y. M. (2022). Biomass and soil carbon stocks of selected agroforestry practice and cultivated land, in Tehuledere District. https://doi.org/10.21203/rs.3.rs-1935909/v1
  • Sharmake, M. A., Sultan, K., Hussain, R., Rehman, A., & Hussain, A. (2023). Decadal impacts of climate change on Rainfed Agriculture community in Western Somaliland, Africa. Sustainability, 15(1), 421. https://doi.org/10.3390/su15010421
  • Sharma, S., Rana, V. S., Prasad, H., Lakra, J., & Sharma, U. (2021a). Appraisal of carbon capture, storage, and utilization through fruit crops. Frontiers in Environmental Science, 9, 700768. https://doi.org/10.3389/fenvs.2021.700768
  • Sharma, S., Rana, V. S., Prasad, H., Lakra, J., & Sharma, U. (2021b). Appraisal of carbon capture, storage, and utilization through fruit crops. Frontiers in Environmental Science, 9, 258. https://doi.org/10.3389/fenvs.2021.700768
  • Shiferaw, H., Kassawmar, T., & Zeleke, G. (2022). Above and belowground woody-biomass and carbon stock estimations at Kunzila watershed, Northwest Ethiopia. Trees, Forests and People, 7, 100204. https://doi.org/10.1016/j.tfp.2022.100204
  • Shivanna, K. (2022). Climate change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy 88, 160–171.
  • Siarudin, M., Rahman, S. A., Artati, Y., Indrajaya, Y., Narulita, S., Ardha, M. J., & Larjavaara, M. (2021). Carbon sequestration potential of agroforestry systems in degraded landscapes in west java, Indonesia. Forests, 12(6), 714. https://doi.org/10.3390/f12060714
  • Sinare, H., Peterson, G., Börjeson, L., & Gordon, L. (2022). Ecosystem services in Sahelian village landscapes 1952–2016: estimating change in a data scarce region. Ecology and Society, 27(3). https://doi.org/10.5751/ES-13292-270301
  • Singh, A. K. (2020) Climate change vulnerability and Adaptation in the livestock sector in Ethiopia orangebooks publication.
  • Singh, S. L., Sahoo, U. K., Kenye, A., & Gogoi, A. (2018). Assessment of growth, carbon stock and sequestration potential of oil palm plantations in Mizoram, Northeast India. Journal of Environmental Protection, 09(9), 912. https://doi.org/10.4236/jep.2018.99057
  • Somasundaram, J., Reeves, S., Wang, W., Heenan, M., & Dalal, R. (2017). Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a vertisol. Land Degradation & Development, 28(5), 1589–1602. https://doi.org/10.1002/ldr.2689
  • Song, R., Zhu, Z., Zhang, L., Li, H., & Wang, H. (2023). A simple method using an allometric model to quantify the carbon sequestration capacity in vineyards. Plants, 12(5), 997. https://doi.org/10.3390/plants12050997
  • Stavi, I., Roque de Pinho, J., Paschalidou, A. K., Adamo, S. B., Galvin, K., de Sherbinin, A., Even, T., Heaviside, C., & van der Geest, K. (2022). Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus. The Anthropocene Review, 9(3), 299–323. https://doi.org/10.1177/20530196211007512
  • Tesfay, H. M., Negash, M., Godbold, D. L., & Hager, H. (2022). Assessing carbon pools of three indigenous agroforestry systems in the Southeastern Rift-Valley landscapes, Ethiopia. Sustainability, 14(8), 4716. https://doi.org/10.3390/su14084716
  • Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: a review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581
  • Tirado, M., Hunnes, D., Cohen, M., & Lartey, A. (2015). Climate change and nutrition in Africa. Journal of Hunger & Environmental Nutrition, 10(1), 22–46. https://doi.org/10.1080/19320248.2014.908447
  • Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage and turnover. Nature, 389(6647), 170–173. https://doi.org/10.1038/38260
  • Trumbore, S. E. (1997). Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences (Vol. 94, pp. 8284–8291).
  • Ukpanyang, D., & Terrados-Cepeda, J. (2022). Decarbonizing vehicle transportation with hydrogen from biomass gasification: An Assessment in the Nigerian urban Environment. Energies, 15(9), 3200. https://doi.org/10.3390/en15093200
  • Uning, R., Latif, M. T., Othman, M., Juneng, L., Mohd Hanif, N., Nadzir, M. S. M., Abdul Maulud, K. N., Jaafar, W. S. W. M., Said, N. F. S., Ahamad, F., & Takriff, M. S. (2020). A review of Southeast Asian oil palm and its CO2 fluxes. Sustainability, 12(12), 5077. https://doi.org/10.3390/su12125077
  • Vacek, Z., Vacek, S., & Cukor, J. (2023). European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332, 117353. https://doi.org/10.1016/j.jenvman.2023.117353
  • Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography, 2(4), 1–7. https://doi.org/10.4172/2157-7625.1000116
  • Wang, L., Zheng, J., Wang, G., Dang, Q.-L., & Tissue, D. (2023). Combined effects of elevated CO2 and warmer temperature on limitations to photosynthesis and carbon sequestration in yellow birch. Tree Physiology, 43(3), 379–389. https://doi.org/10.1093/treephys/tpac128
  • Wassie, S. B. (2020). Natural resource degradation tendencies in Ethiopia: A review. Environmental Systems Research, 9(1), 1–29. https://doi.org/10.1186/s40068-020-00194-1
  • Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402
  • Wittwer, S. H. (1995) Food, climate, and carbon dioxide: The global environment and world food production CRC press.
  • Wu, T., Wang, Y., Yu, C., Chiarawipa, R., Zhang, X., Han, Z., Wu, L., & Bernacchi, C. J. (2012). Carbon sequestration by fruit trees-Chinese apple orchards as an example. PloS One, 7(6), e38883. https://doi.org/10.1371/journal.pone.0038883
  • Xu, S., Sayer, E. J., Eisenhauer, N., Lu, X., Wang, J., & Liu, C. (2021). Aboveground litter inputs determine carbon storage across soil profiles: A meta-analysis. Plant and Soil, 462(1–2), 429–444. https://doi.org/10.1007/s11104-021-04881-5
  • Yasin, G., Farrakh Nawaz, M., Zubair, M., Qadir, I., Saleem, A. R., Ijaz, M., Gul, S., Amjad Bashir, M., Rehim, A., Rahman, S. U., & Du, Z. (2021). Assessing the contribution of citrus orchards in climate change mitigation through carbon sequestration in Sargodha District, Pakistan. Sustainability, 13(22), 12412. https://doi.org/10.3390/su132212412
  • Yulistyarini, T., & Hadiah, J. (2022). Carbon stock potential of Indonesian local fruit trees, some collections of Purwodadi Botanic garden, IOP Conference Series: Earth and Environmental Science (pp. 012057). IOP Publishing. https://doi.org/10.1088/1755-1315/976/1/012057
  • Zahoor, S., Dutt, V., Mughal, A., Pala, N. A., Qaisar, K., & Khan, P. (2021). Apple-based agroforestry systems for biomass production and carbon sequestration: Implication for food security and climate change contemplates in temperate region of Northern Himalaya, India. Agroforestry Systems, 95(2), 367–382. https://doi.org/10.1007/s10457-021-00593-y
  • Zhang, Q., Gao, B., Tian, M., Shi, H., Hua, X., & Wang, M. (2016). Enantioseparation and determination of triticonazole enantiomers in fruits, vegetables, and soil using efficient extraction and clean-up methods. Journal of Chromatography Biomedical Sciences and Applications, 1009, 130–137. https://doi.org/10.1016/j.jchromb.2015.12.018
  • Zhan, Y., Yao, Z., Groffman, P. M., Xie, J., Wang, Y., Li, G., Zheng, X., & Butterbach‐Bahl, K. (2023). Urbanization can accelerate climate change by increasing soil N2O emission while reducing CH4 uptake. Global Change Biology.
  • Zsögön, A., Peres, L. E., Xiao, Y., Yan, J., & Fernie, A. R. (2022). Enhancing crop diversity for food security in the face of climate uncertainty. The Plant Journal: For Cell and Molecular Biology, 109(2), 402–414. https://doi.org/10.1111/tpj.15626