4,244
Views
0
CrossRef citations to date
0
Altmetric
Soil & Crop Sciences

Drought stress effect, tolerance, and management in wheat – a review

ORCID Icon, , , , &
Article: 2296094 | Received 10 Aug 2023, Accepted 13 Dec 2023, Published online: 17 Jan 2024

References

  • Abdelsalam, N. R., Abdel-Megeed, A., Ghareeb, R. Y., Ali, H. M., Salem, M. Z., Akrami, M., Al-Hayalif, M. F., & Desoky, E.-S M. (2022). Genotoxicity assessment of amino zinc nanoparticles in wheat (Triticum aestivum L.) as cytogenetical perspective. Saudi Journal of Biological Sciences, 29(4), 1–15. https://doi.org/10.1016/j.sjbs.2021.11.059
  • Abdoli, M., & Saedi, M. (2012). Effects of water deficiency stress during seed growth on yield and its components, germination and seedling growth parameters of some wheat cultivars. International Journal of Agriculture and Crop Sciences, 4, 1110–1118.
  • Abraha, M. T., Hussein, S., Laing, M., & Assefa, K. (2015). Genetic management of drought in tef: Current status and future research directions. Global Journal of Crop, Soil Science and Plant Breeding, 3, 156–161.
  • Ahmad, A., Aslam, Z., Javed, T., Hussain, S., Raza, A., Shabbir, R., Mora-Poblete, F., Saeed, T., Zulfiqar, F., Ali, M. M., Nawaz, M., Rafiq, M., Osman, H. S., Albaqami, M., Ahmed, M. A. A., & Tauseef, M. (2022). Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agronomy, 12(2), 287. https://doi.org/10.3390/agronomy12020287
  • Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., Hafeez, O. B. A., Tapera, T., Labuschagne, M., & Rizwan, M. (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40(4), 80. https://doi.org/10.1007/s11738-018-2651-6
  • Ajithkumar, I. P., & Panneerselvam, R. (2014). ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense Roth. under drought stress. Cell Biochemistry and Biophysics, 68, 587–595. https://doi.org/10.1007/s12013-013-9746-x
  • Akter, N., & Rafiqul Islam, M. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5), 6. https://doi.org/10.1007/s13593-017-0443-9
  • Ali, M., Gul, A., Hasan, H., Gul, S., Fareed, A., Nadeem, M., Siddique, R, Jan, S. U., & Jamil, M. (2020). Cellular mechanisms of drought tolerance in wheat. In M. Ozturk & A. Gul (Eds.), Climate change and food security with emphasis on wheat (pp. 155–167). Elsevier. https://doi.org/10.1016/B978-0-12-819527-7.00009-1
  • Almansouri, M., Kinet, J. M., & Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231(2), 243–254. https://doi.org/10.1023/A:1010378409663
  • Anderson, J. V., & Davis, D. G. (2004). Abiotic stress alters transcript profiles and activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in Euphorbia esula. Physiologia Plantarum, 120(3), 421–433. https://doi.org/10.1111/j.0031-9317.2004.00249.x
  • Ania, W. (2003). Use of biotechnology in agriculture—Benefits and risks. Biotechnology, 3, 1–6.
  • Anjum, S. A., Ashraf, U., Zohaib, A., Tanveer, M., Naeem, M., Ali, I., Tabassum, T., & Nazir, U. (2017). Growth and developmental responses of crop plants under drought stress: A review. Zemdirbyste-Agriculture, 104(3), 267–276. https://doi.org/10.13080/z-a.2017.104.034
  • Anosheh, H. P., Moucheshi, A. S., Pakniyat, H., & Pessarakli, M. (2016). Stomatal responses to drought stress. Water Stress and Crop Plants, 1, 24–40.
  • Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885–4911. https://doi.org/10.3390/ijms14034885
  • Aroca, R. (2013). Plant responses to drought stress: From morphological to molecular features. In Plant responses to drought stress from morphological to molecular features. Springer. https://doi.org/10.1007/978-3-642-32653-0
  • Arzani, A., & Ashraf, M. (2017). Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477–488. https://doi.org/10.1111/1541-4337.12262
  • Bala, R. (2000). Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Annals of Botany, 86, 709–716. https://doi.org/10.1006/anbo.2000.1254
  • Bandurska, H., Niedziela, J., Pietrowska-Borek, M., Nuc, K., Chadzinikolau, T., & Radzikowska, D. (2017). Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiology and Biochemistry: PPB, 118, 427–437. https://doi.org/10.1016/j.plaphy.2017.07.006
  • Barbara, S., Resources, N., & Collins, F. (2007). Microbial stress-response physiology and its implications. Ecology, 88, 1386–1394.
  • Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M., & Panth, P. (2021). Effect of drought & irrigated environmental condition on yield & yield attributing characteristic of bread wheat-A review. Reviews in Food and Agriculture, 2(2), 59–62. https://doi.org/10.26480/rfna.02.2021.59.62
  • Bing, Y. I. (2014). Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. Journal of Integrative Agriculture, 13, 2399–2406.
  • Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4–10. https://doi.org/10.1111/pce.12800
  • Çakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89(1), 1–16. https://doi.org/10.1016/j.fcr.2004.01.005
  • Chachar, M. H., Chachar, N. A., & Chachar, Q. (2016). Physiological characterization of six wheat. International Journal of Educational Research, 4, 13.
  • Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251–268. https://doi.org/10.1071/CP11303
  • Chen, H., Moakhar, N. P., Iqbal, M., Pozniak, C., Hucl, P., & Spaner, D. (2016). Genetic variation for flowering time and height reducing genes and important traits in western Canadian spring wheat. Euphytica, 208(2), 377–390. https://doi.org/10.1007/s10681-015-1615-9
  • Chen, L., Du, Y., Lu, Q., Chen, H., Meng, R., Cui, C., Lu, S., Yang, Y., Chai, Y., Li, J., Liu, L., Qi, X., Li, H., Mishina, K., Yu, F., & Hu, Y.-G. (2018). The photoperiod-insensitive allele Ppd-D1a promotes earlier flowering in Rht12 dwarf plants of bread wheat. Frontiers in Plant Science, 9, 1312. https://doi.org/10.3389/fpls.2018.01312
  • Chen, L., Yang, Y., Cui, C., Lu, S., Lu, Q., Du, Y., Su, R., Chai, Y., Li, H., Chen, F., Yu, F., & Hu, Y.-G. (2018). Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5 dwarf plants of bread wheat. Field Crops Research, 219, 24–32. https://doi.org/10.1016/j.fcr.2018.01.022
  • Chen, S. Y., Zhang, X. Y., Pei, D., Sun, H. Y., & Chen, S. L. (2007). Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Annals of Applied Biology. 150(3), 261–268. https://doi.org/10.1111/j.1744-7348.2007.00144.x
  • Chowdhury, M. K., Hasan, M. A., Bahadur, M. M., Islam, M. R., Hakim, M. A., Iqbal, M. A., Javed, T., Raza, A., Shabbir, R., Sorour, S., Elsanafawy, N. E. M., Anwar, S., Alamri, S., Sabagh, A. E., & Islam, M. S. (2021). Evaluation of drought tolerance of some wheat (Triticum). Agronomy, 11(9), 1792. https://doi.org/10.3390/agronomy11091792
  • Close, T. J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97(4), 795–803. https://doi.org/10.1034/j.1399-3054.1996.970422.x
  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58. https://doi.org/10.1038/nclimate1633
  • Dalirie, M. S., Sharifi, R. S., & Farzaneh, S. (2010). Evaluation of yield, dry matter accumulation and leaf area index in wheat genotypes as affected by terminal drought stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 182–186.
  • De Simone, V., Soccio, M., Borrelli, G. M., Pastore, D., & Trono, D. (2014). Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. Journal of Plant Research, 127(1), 159–171. https://doi.org/10.1007/s10265-013-0584-0
  • Deshmukh, P., Sairam, R., & Shukla, D. (1991). Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian Journal of Plant Physiology, 34, 89–91.
  • Doležel, J. (2010). Development of chromosome-specific BAC resources for genomics of bread. Cytogenetic and Genome Research, 1–13. https://doi.org/10.1159/000313072
  • Du, Y., Chen, L., Wang, Y., Yang, Z., Saeed, I., Daoura, B. G., & Hu, Y.-G. (2018). The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rainfed bread wheat (Triticum aestivum L.). Field Crops Research, 215, 149–155. https://doi.org/10.1016/j.fcr.2017.10.015
  • El-Mouhamady, A. B. A., El-Hawary, M. M., Ali, M., & Habouh, F. (2023). Transgenic wheat for drought stress tolerance: A review. Middle East Journal of Agriculture Research, 12(1), 77–94. https://doi.org/10.36632/mejar/202
  • Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences: CMLS, 72(4), 673–689. https://doi.org/10.1007/s00018-014-1767-0
  • FAOSTAT. (2022). FAOSTAT. http://www.fao.org/faostat/en/#data/QC
  • Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods drought stress in wheat during flowering and grain-filling. Critical Reviews in Plant Sciences, 33(4), 331–349. https://doi.org/10.1080/07352689.2014.875291
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Fierer, N., & Schimel, J. P. (2002). Effects of drying ± rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34(6), 777–787. https://doi.org/10.1016/S0038-0717(02)00007-X
  • Finkelstein, R. R., Gampala, S. S. L., & Rock, C. D. (2002). Abscisic acid signaling in seeds and seedlings. The Plant Cell, 14(suppl 1), S15–S45. https://doi.org/10.1105/tpc.010441
  • Galiba, G., Kerepesi, I., Snape, J. W., & Sutka, J. (1997). Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theoretical and Applied Genetics, 95(1–2), 265–270. https://doi.org/10.1007/s001220050558
  • Gosal, S. S., Wani, S. H., & Kang, M. S. (2010). Biotechnology and drought tolerance. Water and Agricultural Sustainability Strategies, 23(1), 19–54. https://doi.org/10.1080/15427520802418251
  • Grandgirard, J., Poinsot, D., Krespi, L., Nénon, J. P., & Cortesero, A. M. (2002). Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomologia Experimentalis et Applicata, 103(3), 239–248. https://doi.org/10.1046/j.1570-7458.2002.00982.x
  • Hajibarat, Z., & Saidi, A. (2022). Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. Journal of Genetic Engineering and Biotechnology, 20(1), 1–14. https://doi.org/10.1186/s43141-022-|00378-5
  • Hampson, C. R., & Simpson, G. M. (1990). Effects of temperature, salt, and osmotic potential on early growth of wheat (Triticum aestivum). II. Early seedling growth. Canadian Journal of Botany, 68(3), 529–532. https://doi.org/10.1139/b90-073
  • Hartung, W., Sauter, A., & Hose, E. (2002). Abscisic acid in the xylem: Where does it come from, where does it go to ? Journal of Experimental Botany, 53(366), 27–32. https://doi.org/10.1093/jexbot/53.366.27
  • Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator.
  • He, F., Sheng, M., & Tang, M. (2017). Effects of rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Frontiers in Plant Science, 8, 1–14.
  • Hossain, A., Teixeira da Silva, J. A., Lozovskaya, M. V., & Zvolinsky, V. P. (2012). High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. Phenology and growth. Saudi Journal of Biological Sciences, 19(4), 473–487. https://doi.org/10.1016/j.sjbs.2012.07.005
  • Hossain, M. A., Wani, S. H., Bhattacharjee, S., Burritl, D. J., & Tran, L. S. P. (2016). Drought stress tolerance in plants, vol 1: Physiology and biochemistry. Journal of Physiology and Biochemistry, 1(1), 1–526.
  • Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of. Journal of Plant Nutrition and Soil Science, 168(4), 541–549. https://doi.org/10.1002/jpln.200420516
  • Huang, L., Zhang, H., Song, Y., Yang, Y., Chen, H., & Tang, M. (2017). Subcellular compartmentalization and chemical forms of lead participate in lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Frontiers in Plant Science, 08, 1–12. https://doi.org/10.3389/fpls.2017.00517
  • Hussain, A., & Jatoi, W. A. (2021). Drought tolerance indices of wheat (Triticum aestivum L.) genotypes under water deficit conditions. Plant Cell Biotechnology and Molecular Biology, 20, 1–19.
  • Jiang, F., & Hartung, W. (2007). Long-distance signalling of abscisic acid (ABA): The factors regulating the intensity of the ABA signal. Journal of Experimental Botany, 59(1), 37–43. https://doi.org/10.1093/jxb/erm127
  • Jones, M. B., Leafe, E. L., & Stiles, W. (1980). Water stress in field-grown perennial ryegrass. I. Its effect on growth, canopy photosynthesis and transpiration. Annals of Applied Biology, 96(1), 87–101. https://doi.org/10.1111/j.1744-7348.1980.tb04772.x
  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Pareek, A., & Singla-Pareek, S. L. (2016). Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7, 1–15. https://doi.org/10.3389/fpls.2016.01029
  • Jungang, W., Guocang, C., & Chenglie, Z. (2002). The effects of water stress on soluble protein content, the activity of SOD, POD and CAT of two ecotypes of reeds (Phragmites communis). Acta Botanica Boreali-Occidentalia Sinica, 22, 561–565.
  • Kalladan, R., Worch, S., Rolletschek, H., Harshavardhan, V. T., Kuntze, L., Seiler, C., Sreenivasulu, N., & Röder, M. S. (2013). Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Molecular Breeding, 32(1), 71–90. https://doi.org/10.1007/s11032-013-9853-9
  • Kamal, T., Atiq, M., Khan, U., Khan, F. U., & Ahmed, S. (2020). Comparison among different stability models for yield in bread wheat. Sarhad Journal of Agriculture, 36, 282–290.
  • Kandel, S. (2021). Wheat responses, defence mechanisms and tolerance to drought stress: A review article. International Journal for Research in Applied Sciences and Biotechnology, 8(5), 99–109. https://doi.org/10.31033/ijrasb.8.5.14
  • Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61(2), 201–209. https://doi.org/10.1007/s10535-016-0700-9
  • Kaveh, M., & Chayjan, R. A. (2014). Modeling drying characteristics of terebinth fruit under infrared fluidized bed condition evaluation and modeling some engineering properties of three safflower varieties the effect of hydro-priming on germination characteristics. Seedling Growth and Ant, XLVII, 1–7.
  • Khan, M. A., Waseem Akram, M., Iqbal, M., Ghulam Muhu-Din Ahmed, H., Rehman, A., Arslan Iqbal, H. S. M., & Alam, B. (2023). Communications in soil science and plant analysis multivariate and association analyses of quantitative attributes reveal drought tolerance potential of wheat (Triticum aestivum L.) genotypes. Communications in Soil Science and Plant Analysis, 54(2), 178–195. https://doi.org/10.1080/00103624.2022.2110893
  • Kim, T. H. (2014). Mechanism of ABA signal transduction: Agricultural highlights for improving drought tolerance. Journal of Plant Biology, 57(1), 1–8. https://doi.org/10.1007/s12374-014-0901-8
  • Kim, T. H., Böhmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61(1), 561–591. https://doi.org/10.1146/annurev-arplant-042809-112226
  • Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell, 8(8), 1323–1335. https://doi.org/10.2307/3870304
  • Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1–16. https://doi.org/10.3389/fpls.2022.1085409
  • Kumar, A., Sharma, S. K., Sharma, C. L., & Iiwbr, I. (2018). Impact of water deficit (salt and drought) stress on physiological, biochemical and yield attributes on wheat (Triticum aestivum) varieties. Indian Journal of Agricultural Sciences, 86, 144–152. https://doi.org/10.56093/ijas.v88i10.84255
  • Kumar, U., Joshi, A. K., Kumari, M., Paliwal, R., Kumar, S., & Röder, M. S. (2010). Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ × ‘Sonalika’ population. Euphytica, 174(3), 437–445. https://doi.org/10.1007/s10681-010-0155-6
  • Kumari, M., Singh, V. P., Tripathi, R., & Joshi, A. K. (2007). Variation for staygreen trait and its association with canopy temperature depression and yield traits under terminal heat stress in wheat. International Journal of Plant Breeding, 186, 357–363. https://doi.org/10.1007/1-4020-5497-1_44
  • Kura-Hotta, M., Satoh, K., & Katoh, S. (1987). Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiology, 28, 1321–1329.
  • Kvgk, V. P., & G, R. R. (2019). Various plant’s responses and strategies to cope with the water deficit: A review. Journal of Pharmacognosy and Phytochemistry8, 159–168.
  • La, F., & Sylvestris, T. (1990). Influence of drought on the concentration and distribution of 2,4-diaminobutyric acid and other free amino acids in tissues of flatpea (la Thyrus sylvestris L.) liming. Environmental and Experimental Botany, 30, 497–504.
  • Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., Coomes, O. T., Dirzo, R., Fischer, G., Folke, C., George, P. S., Homewood, K., Imbernon, J., Leemans, R., Li, X., Moran, E. F., Mortimore, M., Ramakrishnan, P. S., Richards, J. F., … Xu, J. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. https://doi.org/10.1016/S0959-3780(01)00007-3
  • Lehari, K., Kumar, M., Burman, V., Vaishali, A., Kumar, V., Chand, P., & Singh, R. (2019). Morphological, physiological and biochemical analysis of wheat genotypes under drought stress. Journal of Pharmacognosy and Phytochemistry, SP2, 1026–1030.
  • Li, X. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. 1–19.
  • Li, Y., Song, H., Zhou, L., Xu, Z., & Zhou, G. (2019). Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field. Agricultural Water Management, 211, 190–201. https://doi.org/10.1016/j.agwat.2018.09.050
  • Lisar, S. Y. S., Motafakkerazad, R., & Hossain, M. M. (2012). Water stress in plants: Causes, effects and responses. In I. M. Mofizur Rahman (Ed.), Water stress (vol. 10, pp. 39363). Water stress.
  • Liu, J., Chen, N., Chen, F., Cai, B., Dal Santo, S., Tornielli, G. B., Pezzotti, M., & Cheng, Z.-M. (2014). Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 15(1), 1–18. https://doi.org/10.1186/1471-2164-15-281
  • Lu, H., Hu, Y., Wang, C., Liu, W., Ma, G., Han, Q., & Ma, D. (2019). Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains. Frontiers in Plant Science, 10, 1–17. https://doi.org/10.3389/fpls.2019.01414
  • Maccaferri, M., Sanguineti, M. C., Corneti, S., Ortega, J. L. A., Salem, M. B., Bort, J., DeAmbrogio, E., del Moral, L. F. G., Demontis, A., El-Ahmed, A., Maalouf, F., Machlab, H., Martos, V., Moragues, M., Motawaj, J., Nachit, M., Nserallah, N., Ouabbou, H., Royo, C., Slama, A., & Tuberosa, R. (2008). Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics, 178(1), 489–511. https://doi.org/10.1534/genetics.107.077297
  • Mafakheri, A., Siosemardeh, A. F., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4, 580–585.
  • Maghsoudi, K., Emam, Y., & Pessarakli, M. (2016). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition, 39(7), 1001–1015. https://doi.org/10.1080/01904167.2015.1109108
  • Manjarrez-Sandoval, P., González-Hernández, V. A., Mendoza-Onofre, L. E., & Engleman, E. M. (1989). Drought stress effects on the grain yield and panicle development of sorghum. Canadian Journal of Plant Science, 69(3), 631–641. https://doi.org/10.4141/cjps89-079
  • Mansour, H. A., El, S., Mohamed, S., & Lightfoot, D. A. (2020). Molecular studies for drought tolerance in some Egyptian wheat genotypes under different irrigation systems. Open Agriculture, 5(1), 280–290. https://doi.org/10.1515/opag-2020-0030
  • McCree, K. J., & Davis, S. D. (1974). Effect of water stress and temperature on leaf size and on size and number of epidermal cells in grain sorghum 1. Crop Science, 14(5), 751–755. https://doi.org/10.2135/cropsci1974.0011183X001400050041x
  • Mittler, R., & Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell, 27(1), 64–70. https://doi.org/10.1105/tpc.114.133090
  • Mohammed, A. K., & Kadhem, F. A. (2017). Effect of water stress on yield and yield components of bread wheat genotypes. Iraqi Journal of Agricultural Sciences, 48, 729–739.
  • Mubarik, M. S. (2021). A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiologia Plantarum, 172, 1269–1290. https://doi.org/10.1111/ppl.13325
  • Mwadzingeni, L., Shimelis, H., Dube, E., Laing, M. D., & Tsilo, T. J. (2016). Breeding wheat for drought tolerance: Progress and technologies. Journal of Integrative Agriculture, 15(5), 935–943. https://doi.org/10.1016/S2095-3119(15)61102-9
  • Nagar, S., Singh, V. P., Arora, A., Dhakar, R., & Ramakrishnan, S. (2015). Assessment of terminal heat tolerance ability of wheat genotypes based on physiological traits using multivariate analysis. Acta Physiologiae Plantarum, 37, 1–9.
  • Narwal, S. (2015). Genetic and molecular dissection of drought tolerance in wheat and barley. Journal of Wheat Researc, 7, 1–13.
  • Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat. The Scientific World Journal, 2013, 1–12. https://doi.org/10.1155/2013/610721
  • Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., & Bukhov, N. G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57, 94–102.
  • Ozturk, M., Turkyilmaz Unal, B., García-Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum. 172(2), 1321–1335. https://doi.org/10.1111/ppl.13297
  • Palmer, J. H., & Steer, B. T. (1985). The generative area as the site of floret initiation in the sunflower capitulum and its integration to predict floret number. Field Crops Research, 11, 1–12. https://doi.org/10.1016/0378-4290(85)90088-7
  • Paudel, B., Zhang, Y., Yan, J., Rai, R., Li, L., Wu, X., Chapagain, P. S., & Khanal, N. R. (2020). Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies. Climate Change, 158(3–4), 485–502. https://doi.org/10.1007/s10584-019-02607-2
  • Paul, C., Debnath, B., & Paul, C. (2019). Plant science today species. Plant Science Today, 6(2), 147–150. https://doi.org/10.14719/pst.2019.6.2.490
  • Pierce, F. J., & Rice, C. W. (2015). Crop rotation and its impact on efficiency of water and nitrogen use. In W. L. Hargrove (Ed.), Cropping strategies for efficient use of water and nitrogen (pp. 21–42). Wiley. https://doi.org/10.2134/asaspecpub51.c3
  • Pnueli, L., Hallak-Herr, E., Rozenberg, M., Cohen, M., Goloubinoff, P., Kaplan, A., & Mittler, R. (2002). Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. The Plant Journal, 31(3), 319–330. https://doi.org/10.1046/j.1365-313X.2002.01364.x
  • Poddar, S., Chandra, B., Viswavidyalaya, K., & Roy, S. (2022). Response and breeding of wheat under drought stress. Agriculture and Environment, 3, 1–6.
  • Poudel, M. R., Ghimire, S., Pandey, M. P., Dhakal, K. H., & Thapa, D. B. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. Journal of Biology and Today’s World, 9, 212.
  • Prasad, P. V. V., Pisipati, S. R., Momčilović, I., & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 197(6), 430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x
  • Premachandra, G. S., Saneoka, H., & Ogata, S. (1990). Cell membrane stability, an indicator of drought tolerance, as affected by applied nitrogen in soyabean. The Journal of Agricultural Science, 115(1), 63–66. https://doi.org/10.1017/S0021859600073925
  • Qadir, G., S, M., & C, M. A. (1998). Effect of water stress on growth and yield performance of four wheat cultivars. Pakistan Journal of Biological Sciences, 2(1), 236–239. https://doi.org/10.3923/pjbs.1999.236.239
  • Rabello, A. R., Guimarães, C. M., Rangel, P. H., da Silva, F. R., Seixas, D., de Souza, E., Brasileiro, A. C., Spehar, C. R., Ferreira, M. E., & Mehta, Â. (2008). Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics, 9(1), 1–13. https://doi.org/10.1186/1471-2164-9-485
  • Rakszegi, M., Darkó, É., Lovegrove, A., Molnár, I., Láng, L., Bedő, Z., Molnár-Láng, M., & Shewry, P. (2019). Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines. PLoS One, 14(2), e0211892. https://doi.org/10.1371/journal.pone.0211892
  • Rawtiya, A. K., & Kasal, Y. G. (2021). Drought stress and wheat (Triticum aestivum L.) yield: A review. The Pharma Innovation Journal, 10, 1007–1012.
  • Raza, M. A. S., Jamil, M., Ijaz, M., Khan, M. A., Saleem, M. F., & Khan, I. H. (2012). Evaluating the drought stress tolerance efficiency of wheat (triticum aestivum l.) Cultivars. Russian Journal of Agricultural and Socio-Economic Sciences, 12, 6.
  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161(11), 1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013
  • Reynolds, M., & Langridge, P. (2016). Physiological breeding. Current Opinion in Plant Biology, 31, 162–171. https://doi.org/10.1016/j.pbi.2016.04.005
  • Ruan, Y. (2014). Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. https://doi.org/10.1146/annurev-arplant-050213-040251
  • Salam, A., Ali, A., Afridi, M. S., & Ali, S. (2022). Agrobiodiversity: Effect of drought stress on the eco-physiology and morphology of wheat chapter 33 agrobiodiversity. Effect of Drought Stress on the Eco-Physiology and Morphology of Wheat, 23, 23. https://doi.org/10.1007/978-3-030-73943-0
  • Saleem, M. F., Sammar Raza, M. A., Ahmad, S., Khan, I. H., & Shahid, A. M. (2016). Understanding and mitigating the impacts of drought stress in cotton-A review understanding and mitigating the impacts of drought stress in cotton-A review. Pakistan Journal of Agricultural Sciences, 53, 1–16. https://doi.org/10.21162/PAKJAS/16.3341
  • Sánchez, F. J., Manzanares, M., De Andres, E. F., Tenorio, J. L., & Ayerbe, L. (1998). Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 59(3), 225–235. https://doi.org/10.1016/S0378-4290(98)00125-7
  • Sareen, S., Tyagi, B. S., & Sharma, I. (2012). Response estimation of wheat synthetic lines to terminal heat stress using stress indices. Journal of Agricultural Science, 4, 97–104.
  • Sharifi, P., & Mohammadkhani, N. (2016). Effects of drought stress on photosynthesis factors in wheat genotypes during anthesis. Cereal Research Communications, 44(2), 229–239. https://doi.org/10.1556/0806.43.2015.054
  • Sharma, B., Yadav, L., Shrestha, A., Shrestha, S., Subedi, M., Subedi, S., & Shrestha, J. (2022). Drought stress and its management in wheat (Triticum aestivum L.): A review. Agricultural Science and Technology, 14(1), 3–14. https://doi.org/10.15547/10.15547/ast.2022.01.001
  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037
  • Shatil-Cohen, A., Attia, Z., & Moshelion, M. (2011). Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: A target of xylem-borne ABA? The Plant Journal, 67(1), 72–80. https://doi.org/10.1111/j.1365-313X.2011.04576.x
  • Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., & Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, 1–8. https://doi.org/10.3389/fpls.2017.01950
  • Shiferaw, B., Smale, M., Braun, H.-J., Duveiller, E., Reynolds, M., & Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 5(3), 291–317. https://doi.org/10.1007/s12571-013-0263-y
  • Shim, J. S., Park, S.-H., Lee, D.-K., Kim, Y. S., Park, S.-C., Redillas, M. C. F. R., Seo, J. S., & Kim, J.-K. (2021). The rice glycine-rich protein 3 confers drought tolerance by regulating mRNA stability of ROS scavenging-related genes. Rice, 14(1), 31. https://doi.org/10.1186/s12284-021-00473-0
  • Singh, A., Singh, D., Kang, J. S., & Aggarwal, N. (2011). Management practices to mitigate the impact of high temperature on wheat: A review. IIOAB Journal, 2, 11–22.
  • Singh, R., Singh, S., Parihar, P., Mishra, R. K., Tripathi, D. K., Singh, V. P., Chauhan, D. K., & Prasad, S. M. (2016). Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes. Frontiers in Plant Science, 7, 1–19. https://doi.org/10.3389/fpls.2016.01299
  • Sperry, J. S., Wang, Y., Wolfe, B. T., Mackay, D. S., Anderegg, W. R. L., McDowell, N. G., & Pockman, W. T. (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212(3), 577–589. https://doi.org/10.1111/nph.14059
  • Storme, N. D., & Geelen, D. (2014). The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant, Cell & Environment, 37(1), 1–18. https://doi.org/10.1111/pce.12142
  • Tatar, Ö., Brück, H., & Asch, F. (2016). Photosynthesis and remobilization of dry matter in wheat as affected by progressive drought stress at stem elongation stage. Journal of Agronomy and Crop Science, 202(4), 292–299. https://doi.org/10.1111/jac.12160
  • Trouverie, J., Thévenot, C., Rocher, J. P., Sotta, B., & Prioul, J. L. (2003). The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. Journal of Experimental Botany, 54(390), 2177–2186. https://doi.org/10.1093/jxb/erg234
  • V, P., Ali, K., Singh, A., Vishwakarma, C., Krishnan, V., Chinnusamy, V., & Tyagi, A. (2019). Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry, 142, 440–451. https://doi.org/10.1016/j.plaphy.2019.07.027
  • Vesala, T., Sevanto, S., Grönholm, T., Salmon, Y., Nikinmaa, E., Hari, P., & Hölttä, T. (2017). Effect of leaf water potential on internal humidity and CO2 dissolution: Reverse transpiration and improved water use efficiency under negative pressure. Frontiers in Plant Science, 8, 1–10. https://doi.org/10.3389/fpls.2017.00054
  • Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12(2), 221–244. https://doi.org/10.4067/S0718-95162012000200003
  • Wiśniewski, K., & Zagdańska, B. (2001). Genotype-dependent proteolytic response of spring wheat to water deficiency. Journal of Experimental Botany, 52(360), 1455–1463. https://doi.org/10.1093/jexbot/52.360.1455
  • Worch, S., Rajesh, K., Harshavardhan, V. T., Pietsch, C., Korzun, V., Kuntze, L., Börner, A., Wobus, U., Röder, M. S., & Sreenivasulu, N. (2011). Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biology, 11, 1–14. https://doi.org/10.1186/1471-2229-11-1
  • Wu, Q., & Ying-Ning, Z. (2019). Arbuscular mycorrhizal fungi and tolerance of drought stress in plants chapter 2 arbuscular mycorrhizal fungi and tolerance of drought stress in plants. https://doi.org/10.1007/978-981-10-4115-0
  • Yang, J., & Zhang, J. (2006). Grain filling of cereals under soil drying. New Phytologist. 169(2), 223–236. https://doi.org/10.1111/j.1469-8137.2005.01597.x
  • Yi, B., Zhou, Y-f., Gao, M-y., Zhang, Z., Han, Y., Yang, G-d., Xu, W., & Huang, R-d (2014). Effect of drought stress during flowering stage on starch accumulation and starch synthesis enzymes in sorghum grains. Journal of Integrative Agriculture, 13(11), 2399–2406. https://doi.org/10.1016/S2095-3119(13)60694-2
  • Yu, J., Jiang, M., & Guo, C. (2019). Crop pollen development under drought: From the phenotype to the mechanism. International Journal of Molecular Sciences, 20(7), 1550. https://doi.org/10.3390/ijms20071550
  • Yu, X. (2015). Effect of drought stress on the development of endosperm starch granules and the composition and physicochemical properties of starches from soft and hard wheat. https://doi.org/10.1002/jsfa.7439
  • Zhang, J., & Davies, W. (2023). Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves. Journal of Experimental Botany, 38, 2015–2023.
  • Zhang, Z., Hu, M., Xu, W., Wang, Y., Huang, K., Zhang, C., & Wen, J. (2021). Understanding the molecular mechanism of anther development under abiotic stresses. Plant Molecular Biology, 105(1–2), 1–10. https://doi.org/10.1007/s11103-020-01074-z
  • Zhao, W., Liu, L., Shen, Q., Yang, J., & Han, X. (2020). Water effects of water stress on photosynthesis, yield, 1–19.[AQ]
  • Zheng, B., Chenu, K., Fernanda Dreccer, M., & Chapman, S. C. (2012). Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 18(9), 2899–2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x
  • Zivcak, M., Brestic, M., Balatova, Z., Drevenakova, P., Olsovska, K., Kalaji, H. M., Yang, X., & Allakhverdiev, S. I. (2013). Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynthesis Research, 117(1–3), 529–546. https://doi.org/10.1007/s11120-013-9885-3
  • Zohaib, A., Tabassum, T., Jabbar, A., Anjum, S. A., Abbas, T., Mehmood, A., Irshad, S., Kashif, M., Nawaz, M., Farooq, N., Nasir, I. R., Rasool, T., Nadeem, M., & Ahmad, R. (2018). Effect of plant density, boron nutrition and growth regulation on seed mass, emergence and offspring growth plasticity in cotton. Scientific Reports, 8(1), 10489. https://doi.org/10.1038/s41598-018-26308-5
  • Zörb, C., Ludewig, U., & Hawkesford, M. J. (2018). Perspective on wheat yield and quality with reduced nitrogen supply. Trends in Plant Science. 23(11), 1029–1037. https://doi.org/10.1016/j.tplants.2018.08.012