362
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

The antioxidant response mechanism of flavonoids in ‘Tainong 1’ mango pulp under enhanced UV-B radiation

ORCID Icon, , , , , ORCID Icon & show all
Article: 2301273 | Received 30 Sep 2023, Accepted 29 Dec 2023, Published online: 24 Jan 2024

References

  • Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186(4), 1–17.
  • Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: Location and functional significance. Plant Science: An International Journal of Experimental Plant Biology, 196, 67–76. https://doi.org/10.1016/j.plantsci.2012.07.014
  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., & Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. Journal of Plant Physiology, 168(3), 204–212. https://doi.org/10.1016/j.jplph.2010.07.016
  • Bandyopadhyay, U., Das, D., & Banerjee, R. K. (1999). ROS: oxidative damage and pathogenesis. Current Science, 77, 658–666.
  • Bilger, W., Johnsen, T., & Schreiber, U. (2001). UV‐excited chlorophyll fluorescence as a tool for the assessment of UV‐protection by the epidermis of plants. Journal of Experimental Botany, 52(363), 2007–2014. https://doi.org/10.1093/jexbot/52.363.2007
  • Brestic, M., Zivcak, M., Vysoka, D. M., Barboricova, M., Gasparovic, K., Yang, X., & Kataria, S. (2023). Acclimation of photosynthetic apparatus to UV-B radiation. In UV-B Radiation and Crop Growth (pp. 223–260). Singapore: Springer Nature Singapore.
  • Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
  • Chen, T., Peng, J., Qian, M., Shui, X., Du, J., Liu, F., & Zhou, K. (2023). The effects of enhanced ultraviolet-b radiation on leaf photosynthesis and submicroscopic structures in Mangifera indica L. cv. & lsquo; Tainong No 1’. Horticulturae, 9(1), 83. https://doi.org/10.3390/horticulturae9010083
  • Di Ferdinando, M., Brunetti, C., & Fini, A. (2012). Flavonoids as antioxidants in plants under abiotic stresses. In Abiotic Stress Responses in Plants: metabolism, Productivity and Sustainability (pp. 159–179).
  • Dias, M. C., Pinto, D. C. G. A., Freitas, H., Santos, C., & Silva, A. M. S. (2020). The antioxidant system in Olea europaea to enhanced UV-B radiation also depends on flavonoids and secoiridoids. Phytochemistry, 170, 112199. https://doi.org/10.1016/j.phytochem.2019.112199
  • Dukowic-Schulze, S., Harvey, A., Garcia, N., Chen, C., & Gardner, G. (2022). UV‐B irradiation results in inhibition of hypocotyl elongation, cell cycle arrest, and decreased endoreduplication mediated by miR5642. Photochemistry and Photobiology, 98(5), 1084–1099. https://doi.org/10.1111/php.13574
  • Fu, S., Xue, S., Chen, J., Shang, S., Xiao, H., Zang, Y., & Tang, X. (2021). Effects of different short-term UV-B radiation intensities on metabolic characteristics of Porphyra haitanensis. International Journal of Molecular Sciences, 22(4), 22. https://doi.org/10.3390/ijms22042180
  • Fuglevand, G., Jackson, J. A., & Jenkins, G. I. (1996). UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis. Plant Cell, 8(12), 2347–2357. https://doi.org/10.2307/3870473
  • Gai, Q.-Y., Lu, Y., Jiao, J., Fu, J.-X., Xu, X.-J., Yao, L., & Fu, Y.-J. (2022). Application of UV-B radiation for enhancing the accumulation of bioactive phenolic compounds in pigeon pea [Cajanus cajan (L.) Millsp.] hairy root cultures. Journal of Photochemistry and Photobiology. B, Biology, 228, 112406. https://doi.org/10.1016/j.jphotobiol.2022.112406
  • Gao, A., Chen, Y., Luo, R., et al. (2019). Development status of Chinese mango industry in 2018. Advances in Agriculture, Horticulture and Entomology, 1, 21–60.
  • Haapala, J. K., Mörsky, S. K., Saarnio, S., Rinnan, R., Suokanerva, H., Kyrö, E., Latola, K., Martikanen, P. J., Holopainen, T., & Silvola, J. (2009). Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiation. Global Change Biology, 15(4), 943–954.
  • He, M., Min, J.-W., Kong, W.-L., He, X.-H., Li, J.-X., & Peng, B.-W. (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115, 74–85. https://doi.org/10.1016/j.fitote.2016.09.011
  • Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron (Oxford, England: 1993), 33(2), 179–197. https://doi.org/10.1016/s0968-4328(01)00011-7
  • Jiao, J., Gai, Q.-Y., Wang, W., Luo, M., Gu, C.-B., Fu, Y.-J., & Ma, W. (2015). Ultraviolet radiation-elicited enhancement of isoflavonoid accumulation, biosynthetic gene expression, and antioxidant activity in Astragalus membranaceus hairy root cultures. Journal of Agricultural and Food Chemistry, 63(37), 8216–8224. https://doi.org/10.1021/acs.jafc.5b03138
  • Jiao, J., Gai, Q.-Y., Yao, L.-P., Niu, L.-L., Zang, Y.-P., & Fu, Y.-J. (2018). Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Industrial Crops and Products, 118, 347–354. https://doi.org/10.1016/j.indcrop.2018.03.046
  • Jovanić, B. R., Radenković, B., Despotović-Zrakić, M., Bogdanović, Z., & Barać, D. (2022). Effect of UV-B radiation on chlorophyll fluorescence, photosynthetic activity and relative chlorophyll content of five different corn hybrids. Journal of Photochemistry and Photobiology, 10, 100115. https://doi.org/10.1016/j.jpap.2022.100115
  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., & Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47(10), 3954–3962. https://doi.org/10.1021/jf990146l
  • Kaibing, Z., Li, S. J., & Yuan, M. L. (2018). Effect of enhanced UV-B radiation on mango plant production and fruit quality and photosynthesis. Journal of Tropical Crop, 39(06), 1102–1107. (In Chinese)
  • Kakani, V. G., Reddy, K. R., Zhao, D., & Sailaja, K. (2003). Field crop responses to ultraviolet-B radiation: A review. Agricultural and Forest Meteorology, 120(1–4), 191–218. https://doi.org/10.1016/j.agrformet.2003.08.015
  • Khan, A. N., & Dilshad, E. (2023). Enhanced antioxidant and anticancer potential of Artemisia carvifolia buch transformed with rol A gene. Metabolites, 13(3), 351. https://doi.org/10.3390/metabo13030351
  • Lin, X., Liao, H., Du, J., et al. (2021). Effect of enhanced UV-B radiation on fruit maturity and quality, and leaf photosynthesis in ‘Guifei’ mango.
  • Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
  • Mengling, Y., Yue, K., Wang, H., Guo, Y. J., & Zhou, K. B. (2018). The effect of enhanced UV-B radiation on adult mango tree photosynthesis and its yield and conventional quality. Journal of Southern Agriculture, 49(05), 930–937. (In Chinese)
  • Ozel, H. B., Abo Aisha, A. E. S., Cetin, M., Sevik, H., & Zeren Cetin, I. (2021). The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Environmental Monitoring and Assessment, 193(7), 388. https://doi.org/10.1007/s10661-021-09178-9
  • Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
  • Peng, L. I. U., Kaibing, Z. H. O. U., & Xuefeng, P. A. N. (2010). Damage and protective response of old mango leaves under enhanced UV-B radiation treatment. Plant Physiology Communications, 46(08), 787–792. (In Chinese)
  • Prášil, I., & Zámečník, J. (1998). The use of a conductivity measurement method for assessing freezing injury: I. Influence of leakage time, segment number, size and shape in a sample on evaluation of the degree of injury. Environmental and Experimental Botany, 40(1), 1–10. https://doi.org/10.1016/S0098-8472(98)00010-0
  • Ramani, S., & Chelliah, J. (2007). UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseuscell suspension cultures. BMC Plant Biology, 7(1), 61. https://doi.org/10.1186/1471-2229-7-61
  • Rodríguez De Luna, S. L., Ramírez-Garza, R. E., & Serna Saldívar, S. O. (2020). Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Scientific World Journal, 2020, 1–38. https://doi.org/10.1155/2020/6792069
  • Rojas-Lillo, Y., Alberdi, M., Acevedo, P., Inostroza-Blancheteau, C., Rengel, Z., Mora, M. D. L. L., & Reyes-D Az, M. (2014). Manganese toxicity and UV-B radiation differentially influence the physiology and biochemistry of highbush blueberry (Vaccinium corymbosum) cultivars. Functional Plant Biology: FPB, 41(2), 156–167. https://doi.org/10.1071/FP12393
  • Šamec, D., Karalija, E., Šola, I., Vujčić Bok, V., & Salopek-Sondi, B. (2021). The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10(1), 118. https://doi.org/10.3390/plants10010118
  • Schreiner, M., Mewis, I., Neugart, S., Zrenner, R., Glaab, J., Wiesner, M., & Jansen, M. A. (2016). UV-B elicitation of secondary plant metabolites. In III-Nitride Ultraviolet Emitters: Technology and Applications (pp. 387–414). Springer.
  • Sen, A., & Alikamanoglu, S. (2013). Antioxidant enzyme activities, malondialdehyde, and total phenolic content of PEG-induced hyperhydric leaves in sugar beet tissue culture. In Vitro Cellular & Developmental Biology – Plant, 49(4), 396–404. https://doi.org/10.1007/s11627-013-9511-2
  • Sen, A., Puthur, J. T., Challabathula, D., & Brestič, M. (2022). Transgenerational effect of UV-B priming on photochemistry and associated metabolism in rice seedlings subjected to PEG-induced osmotic stress. Photosynthetica, 60(2), 219–229. https://doi.org/10.32615/ps.2022.006
  • Shi, B., Wu, H., Zheng, B., Qian, M., Gao, A., & Zhou, K. (2021). Analysis of light-independent anthocyanin accumulation in mango (Mangifera indica L.). Horticulturae, 7(11), 423. https://doi.org/10.3390/horticulturae7110423
  • Shin, S. W., Jung, E., Kim, S., Kim, J.-H., Kim, E.-G., Lee, J., & Park, D. (2013). Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS One. 8(4), e61971. https://doi.org/10.1371/journal.pone.0061971
  • Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research, 579(1–2), 200–213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
  • Sun, G. C., Zhao, P., Zeng, X. P., & Peng, S. L. (2000). Effect of UV-B radiation on banana leaf photosynthesis and leaf nitrogen distribution in the photosynthetic carbon cycle component. Botany Bulletin, 17(05), 450–456. (In Chinese)
  • Takshak, S., & Agrawal, S. B. (2019). Defense potential of secondary metabolites in medicinal plants under UV-B stress. Journal of Photochemistry and Photobiology. B, Biology, 193, 51–88. https://doi.org/10.1016/j.jphotobiol.2019.02.002
  • Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021
  • Veiga, M., Costa, E. M., Silva, S., & Pintado, M. (2020). Impact of plant extracts upon human health: A review. Critical Reviews in Food Science and Nutrition, 60(5), 873–886. https://doi.org/10.1080/10408398.2018.1540969
  • Wang, H., Guo, Y., Zhu, J., Yue, K., & Zhou, K. (2021). Characteristics of mango leaf photosynthetic inhibition by enhanced UV-B radiation. Horticulturae, 7(12), 557. https://doi.org/10.3390/horticulturae7120557
  • Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5(3), 218–223. https://doi.org/10.1016/s1369-5266(02)00256-x
  • Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038
  • Wong, H. J., Mohamad-Fauzi, N., Rizman-Idid, M., Convey, P., Smykla, J., & Alias, S. A. (2022). UV‐B‐induced DNA damage and repair pathways in polar Pseudogymnoascus sp. from the Arctic and Antarctic regions and their effects on growth, pigmentation, and coniodiogenesis. Environmental Microbiology, 24(7), 3164–3180. https://doi.org/10.1111/1462-2920.16073
  • Wu, F. F., Zheng, Y. F., & Wan, C. J. (2008). Effect of UV-B radiation enhancement on the pathogenesis of apple post-harvest anthrax and disease resistance-related enzyme activity. Ecological Environment, 17(01), 5. (In Chinese)
  • Xu, F., Liu, W., Wang, H., Alam, P., Zheng, W., & Faizan, M. (2023). Genome identification of the tea plant (Camella sinensis) ASMT gene family and its expression analysis under abiotic stress. Genes, 14(2), 409. https://doi.org/10.3390/genes14020409
  • Yin, Y., Li, W., Son, Y.-O., Sun, L., Lu, J., Kim, D., Wang, X., Yao, H., Wang, L., Pratheeshkumar, P., Hitron, A. J., Luo, J., Gao, N., Shi, X., & Zhang, Z. (2013). Quercitrin protects skin from UVB-induced oxidative damage. Toxicology and Applied Pharmacology, 269(2), 89–99. https://doi.org/10.1016/j.taap.2013.03.015
  • Zeraik, M. L., & Yariwake, J. H. (2010). Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchemical Journal, 96(1), 86–91. https://doi.org/10.1016/j.microc.2010.02.003
  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165–5170. https://doi.org/10.1021/jf010697n
  • Zlatev, Z. S., Lidon, F. J., & Kaimakanova, M. (2012). Plant physiological responses to UV-B radiation. Emirates Journal of Food and Agriculture, 24(6), 481–501. https://doi.org/10.9755/ejfa.v24i6.481501