343
Views
0
CrossRef citations to date
0
Altmetric
Food Science & Technology

Nutraceutical properties, biological activities, and industrial applications of chickpea protein

, , , , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2338653 | Received 20 Oct 2023, Accepted 31 Mar 2024, Published online: 18 Apr 2024

References

  • Aider, M., Sirois-Gosselin, M., & Boye, J. I. (2012). Pea, lentil and chickpea protein application in bread making. Journal of Food Research, 1(4), 1. https://doi.org/10.5539/jfr.v1n4p160
  • Ariyarathna, I. R., & Nedra Karunaratne, D. (2015). Use of chickpea protein for encapsulation of folate to enhance nutritional potency and stability. Food and Bioproducts Processing, 95, 76–15. https://doi.org/10.1016/j.fbp.2015.04.004
  • Ashokkumar, K., Diapari, M., Jha, A. B., Tar’an, B., Arganosa, G., & Warkentin, T. D. (2015). Genetic diversity of nutritionally important carotenoids in 94 pea and 121 chickpea accessions. Journal of Food Composition and Analysis, 43, 49–60. https://doi.org/10.1016/j.jfca.2015.04.014
  • Bakr, T. M. A. (1987). Nutritional evaluation of sausages containing chick peas and faba beans as meat protein extenders. Food Chemistry. 23(2), 143–150.
  • Banti, M., & Bajo, W. (2020). Review on nutritional importance and anti-nutritional factors of legumes. International Journal of Nutrition and Food Sciences, 9(6), 138–149. https://doi.org/10.11648/j.ijnfs.20200906.11
  • Begum, N., Khan, Q. U., Liu, L. G., Li, W., Liu, D., & Haq, I. U. (2023). Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10.
  • Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in Food Science and Technology. 93(228), 53–68. https://doi.org/10.1016/j.tifs.2019.08.022
  • Bhatty, R. S. (1982). Albumin proteins of eight edible grain legume species: Electrophoretic patterns and amino acid composition. Journal of Agricultural and Food Chemistry, 30(3), 620–622. https://doi.org/10.1021/jf00111a057
  • Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: A review. International Journal of Food Science & Technology, 56(11), 5435–5444. https://doi.org/10.1111/ijfs.15046
  • Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International. 43(2), 537–546. https://doi.org/10.1016/j.foodres.2009.07.021
  • Boye, J. I., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International. 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
  • Chang, Y. W., Alli, I., Molina, A. T., Konishi, Y., & Boye, J. I. (2012). Isolation and characterization of chickpea (Cicer arietinum L.) seed protein fractions. Food and Bioprocess Technology, 5(2), 618–625. https://doi.org/10.1007/s11947-009-0303-y
  • Chen, N., Zhao, M., Chassenieux, C., & Nicolai, T. (2016). Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocolloids, 61, 740–746. 06.028 https://doi.org/10.1016/j.foodhyd.2016
  • Cox, A. L., Eigenmann, P. A., & Sicherer, S. H. (2021). Clinical relevance of cross-reactivity in food allergy. The Journal of Allergy and Clinical Immunology. In Practice, 9(1), 82–99. https://doi.org/10.1016/j.jaip.2020.09.030
  • Dabai, F. D., Walker, A. F., Sambrook, I. E., Welch, V. A., Owen, R. W., & Abeyasekera, S. (1996). Comparative effects on blood lipids and faecal steroids of five legume species incorporated into a semi-purified, hypercholesterolaemic rat diet. The British Journal of Nutrition, 75(4), 557–571. https://doi.org/10.1079/bjn19960159
  • Dandachy, S., Mawlawi, H., & Obeid, O. (2019). Effect of processed chickpea flour incorporation on sensory properties of Man koushe Zaatar. Foods (Basel, Switzerland), 8(5), 151. https://doi.org/10.3390/foods8050151
  • Day, L. (2013). Proteins from land plants—Potential resources for human nutrition and food security. Trends in Food Science and Technology. 32(1), 25–42. 005 https://doi.org/10.1016/j.tifs.2013.05
  • Fahmy, S. R., Soliman, A. M., Sayed, A. A., & Marzouk, M. (2015). Possible antiosteoporotic mechanism of Cicer arietinum extract in ovariectomized rats. Int. J. Clin. Exp. Pathol, 8(4), 3477.
  • Food and Agriculture Organization of the United Nations (FAO). (2020). FAOSTAT statistical database, chickpea production data. FAO.
  • Frimpong, A., Sinha, A., Tar’an, B., Warkentin, T. D., Gossen, B. D., & Chibbar, R. N. (2009). Genotype and growing environment influence chickpea (Cicer arietinum L.) seed composition. Journal of the Science of Food and Agriculture, 89(12), 2052–2063. https://doi.org/10.1002/jsfa.3690
  • Gangola, M. P., Ramadoss, B. R., Jaiswal, S., Fabek, H., Tulbek, M., Anderson, G. H., & Chibbar, R. N. (2022). Nutritional composition and in vitro starch digestibility of crackers supplemented with faba bean whole flour, starch concentrate, protein concentrate and protein isolate. Foods (Basel, Switzerland), 11(5), 645. https://doi.org/10.3390/foods11050645
  • Garcia-Valle, D. E., Bello-Pérez, L. A., Agama-Acevedo, E., & Alvarez Ramirez, J. (2021). Structural characteristics and in vitro starch digestibility of pasta made with durum wheat semolina and chickpea flour. LWT, 145, 111347. https://doi.org/10.1016/j.lwt.2021.111347
  • Ghribi, A. M., Ben Amira, A., Maklouf Gafsi, I., Lahiani, M., Bejar, M., Triki, M., Zouari, A., Attia, H., & Besbes, S. (2018). Toward the enhancement of sensory profile of sausage “Merguez” with chickpea protein concentrate. Meat Science, 143, 74–80. https://doi.org/10.1016/j.meatsci.2018.04.025
  • Ghribi, A. M., Maklouf, I., Blecker, C., Attia, H., & Besbes, S. (2015). Nutritional and compositional study of Desi and Kabuli chickpea (Cicer Arietinum L.) flours from Tunisian cultivars. Advanced in Food Technology and Nutritional Sciences - Open Journal, 1(2), 38–47. https://doi.org/10.17140/AFTNSOJ-1-107
  • Ghumman, A., Kaur, A., & Singh, N. (2016). Functionality and digestibility of albumins and globulins from lentil and horse gram and their effect on starch rheology. Food Hydrocolloids, 61, 843–850. https://doi.org/10.1016/j.foodhyd.2016.07.013
  • Goñi, I., & Valentín-Gamazo, C. (2003). Chickpea flour ingredient slows glycemic response to pasta in healthy volunteers. Food Chemistry. 81(4), 511–515. https://doi.org/10.1016/S0308-8146(02)00480-6
  • Grasso, N., Bot, F., Roos, Y. H., Crowley, S. V., Arendt, E. K., & O’Mahony, J. A. (2023). Plant-based alternatives to cheese formulated using blends of zein and chickpea protein ingredients. Foods (Basel, Switzerland), 12(7), 1492. https://doi.org/10.3390/foods12071492
  • Grasso, N., Lynch, N. L., Arendt, E. K., & O’Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452. https://doi.org/10.1111/1541-4337.12878
  • Hall, C., Hillen, C., & Robinson, J. G. (2017). Composition, nutritional value, and health benefits of pulses. Cereal Chemistry, 94(1), 11–31. https://doi.org/10.1094/CCHEM-03-16-0069-FI
  • Hao, X., Li, J., Shi, Q., Zhang, J., He, X., & Ma, H. (2009). Characterization of a novel legumin α-amylase inhibitor from chickpea (Cicer arietinum L.) seeds. Bioscience, Biotechnology, and Biochemistry, 73(5), 1200–1202. https://doi.org/10.1271/bbb.80776
  • Idate, A., Shah, R., Gaikwad, V., Kumathekar, S., & Temgire, S. (2021). A comprehensive review on antinutritional factors of chickpea (Cicer arietinum L.). The Pharma Innovation, 10(5), 816–823. https://doi.org/10.22271/tpi.2021.v10.i5k.6306
  • Iqbal, A., Ateeq, N., Khalil, I. A., Perveen, S., & Saleemullah, S. (2006). Physicochemical characteristics and amino acid profile of chickpea cultivars grown in Pakistan. Journal of Foodservice, 17(2), 94–101. https://doi.org/10.1111/j.1745-4506.2006.00024.x
  • Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. The British Journal of Nutrition, 108 Suppl 1(S1), S11–S26. https://doi.org/10.1017/S0007114512000797
  • Karaca, A. C., Nickerson, M., & Low, N. H. (2013). Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139(1–4), 448–457. https://doi.org/10.1016/j.foodchem.2013.01.040
  • Kaur, R., & Prasad, K. (2021). Technological, processing and nutritional aspects of chickpea (Cicer arietinum)-A review. Trends in Food Science and Technology. 109, 448–463. https://doi.org/10.1016/j.tifs.2021.01.044
  • Knights, E. J., & Hobson, K. B. (2016). Chickpea: Overview. In Colin W. Wrigley, Harold Corke, Koushik Seetharaman, & Jonathan Faubion (Eds.), Encyclopedia of food grains (2nd ed., pp. 316–323). Academic Press. https://doi.org/10.1016/B978-0-12-394437-5.00035-8
  • Korbu, L., Tafes, B., Kassa, G., Mola, T., & Fikre, A. (2020). Unlocking the genetic potential of chickpea through improved crop management practices in Ethiopia. A review. Agronomy for Sustainable Development, 40(2), 1–20. https://doi.org/10.1007/s13593-020-00618-3
  • Kumar, S., Kapoor, V., Gill, K., Singh, K., Xess, I., Das, S. N., & Dey, S. (2014). Antifungal and antiproliferative protein from Cicer arietinum: A bioactive compound against emerging pathogens. BioMed Research International, 2014, 387203–387209. https://doi.org/10.1155/2014/387203
  • Kurek, M. A., Onopiuk, A., Pogorzelska-Nowicka, E., Szpicer, A., Zalewska, M., & Półtorak, A. (2022). Novel protein sources for applications in meat-alternative products—Insight and challenges. Foods (Basel, Switzerland), 11(7), 957. https://doi.org/10.3390/foods11070957
  • Kyriakopoulou, K., Keppler, J. K., & van der Goot, A. J. (2021). Functionality of ingredients and additives in plant-based meat analogues. Foods (Basel, Switzerland), 10(3), 600. https://doi.org/10.3390/foods10030600
  • Laxmi, V. C (2022). larification of non communicable diseases their types and risk factor and some preventive action to reduce the chronic diseases.
  • Malunga, L. N., Bar-El Dadon, S., Zinal, E., Berkovich, Z., Abbo, S., & Reifen, R. (2014). The potential use of chickpeas in development of infant follow-on formula. Nutrition Journal, 13(1), 8. https://doi.org/10.1186/1475-2891-13-8
  • Mark, K. S., & Davis, T. P. (2000). Stroke: Development, prevention and treatment with peptidase inhibitors. Peptides, 21(12), 1965–1973. https://doi.org/10.1016/s0196-9781(00)00346-6
  • Maryniak, N. Z., Sancho, A. I., Hansen, E. B., & Bøgh, K. L. (2022). Alternatives to cow’s milk-based infant formulas in the prevention and management of cow’s milk allergy. Foods (Basel, Switzerland), 11(7), 926. https://doi.org/10.3390/foods11070926
  • Matemu, A., Nakamura, S., & Katayama, S. (2021). Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants, 10(2), 316. https://doi.org/10.3390/antiox10020316
  • Mohammed Mubarak, V. (2009). Development and analysis of transgenic chickpea for resistant to Helicoverpa armigera (Hubner) [Doctoral dissertation, Tamil Nadu Agricultural University].
  • Monnet, A. F., Laleg, K., Michon, C., & Micard, V. (2019). Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends in Food Science and Technology. 86, 131–143. https://doi.org/10.1016/j.tifs.2019.02.027
  • Nartea, A., Kuhalskaya, A., Fanesi, B., Orhotohwo, O. L., Susek, K., Rocchetti, L., & Papa, R. (2023). Legume byproducts as ingredients for food applications: Preparation, nutrition, bioactivity, and techno‐functional properties. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1953–1985.
  • Nasir, M., & Sidhu, J. S. (2012). Common pulses: Chickpea, lentil, mungbean, black gram, pigeon pea and Indian vetch. In M. Siddiq & M. A. Uebersax (Eds.), Dry beans and pulses production, processing and nutrition (pp. 283–309).
  • Okagu, O. D., & Udenigwe, C. C. (2022). Molecular interactions of pea globulin, albumin and glutelin with curcumin: Formation and gastric release mechanisms of curcumin-loaded bio-nanocomplexes. Food Biophysics, 17(1), 10–25. https://doi.org/10.1007/s11483-021-09697-5
  • Ouazib, M., Garzon, R., Zaidi, F., & Rosell, C. M. (2016). Germinated, toasted and cooked chickpea as ingredients for bread making. Journal of Food Science and Technology, 53(6), 2664–2672. https://doi.org/10.1007/s13197-016-2238-4
  • Özer, S., Karaköy, T., Toklu, F., Baloch, F. S., Kilian, B., & Özkan, H. (2010). Nutritional and physicochemical variation in Turkish kabuli chickpea (Cicer arietinum L.) landraces. Euphytica, 175(2), 237–249. https://doi.org/10.1007/s10681-010-0174-3
  • Papalamprou, E. M., Doxastakis, G. I., Biliaderis, C. G., & Kiosseoglou, V. (2009). Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocolloids, 23(2), 337–343. 10.1016/j.foodhyd.2008.03.006
  • Pathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates and Dietary Fibre, 27, 100295. https://doi.org/10.1016/j.bcdf.2021.100295
  • Patil, N. (2023). Chickpea protein: A comprehensive review on nutritional properties, processing, functionality, applications, and sustainable impact.
  • Pedroche, J., Yust, M. M., Girón‐Calle, J., Alaiz, M., Millán, F., & Vioque, J. (2002). Utilisation of chickpea protein isolates for production of peptides with angiotensin I‐converting enzyme (ACE)‐inhibitory activity. Journal of the Science of Food and Agriculture, 82(9), 960–965. https://doi.org/10.1002/jsfa.1126
  • Rachwa-Rosiak, D., Nebesny, E., & Budryn, G. (2015). Chickpeas—Composition, nutritional value, health benefits, application to bread and snacks: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1137–1145. https://doi.org/10.1080/10408398.2012687418
  • Redden, R. J., & Berger, J. D. (2007). Chickpea breeding and management: History and origin of chickpea (pp. 1–13). CAB International.
  • Sánchez-Chino, X. M., Jiménez Martínez, C., León-Espinosa, E. B., Garduño-Siciliano, L., Álvarez-González, I., Madrigal-Bujaidar, E., Vásquez-Garzón, V. R., Baltiérrez-Hoyos, R., & Dávila-Ortiz, G. (2019). Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. Journal of the American College of Nutrition, 38(2), 162–170. https://doi.org/10.1080/07315724.2018.1487809
  • Serrano, C., Carbas, B., Castanho, A., Soares, A., Patto, M. C. V., & Brites, C. (2017). Characterisation of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop and Pasture Science, 68(11), 1031–1040. https://doi.org/10.1071/CP17129
  • Serrano-Sandoval, S. N., Guardado-Félix, D., & Gutiérrez-Uribe, J. A. (2019). Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chemistry, 285, 290–295. https://doi.org/10.1016/j.foodchem.2019.01.137
  • Sharma, S., Upadhyaya, H. D., Roorkiwal, M., Varshney, R. K., & Gowda, C. L. L. (2013). Chickpea. In M. Singh, H. D. Upadhyaya, & I. S. Bisht Eds.), Genetic and genomic resources of grain legume improvement (pp. 81–111). Elsevier Inc.
  • Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8
  • Sim, S. Y. J., Srv, A., Chiang, J. H., & Henry, C. J. (2021). Plant proteins for future foods: A roadmap. Foods (Basel, Switzerland), 10(8), 1967. https://doi.org/10.3390/foods10081967
  • Singh, N., Sandhu, K. S., & Kaur, M. (2004). Characterization of starches separated from Indian chickpea (CicerarietinumL.) cultivars. Journal of Food Engineering. 63(4), 441–449. https://doi.org/10.1016/j.jfoodeng.2003.09.003
  • Singh, U. (1985). Nutritional quality of chickpea (Cicer arietinum L.): Current status and future research needs. Qualitas Plantarum Plant Foods for Human Nutrition, 35(4), 339–351. https://doi.org/10.1007/BF01091779
  • Singh, U., & Jambunathan, R. (1982). Distribution of seed protein fractions and amino acids in different anatomical parts of chickpea (Cicerarietinum L.) and pigeon pea (Cajanuscajan L. Qualitas Plantarum Plant Foods for Human Nutrition, 31(4), 347–354.) https://doi.org/10.1007/BF01094046
  • Singhal, A., Karaca, A. C., Tyler, R., & Nickerson, M. (2016). Pulse proteins: From processing to structure-function relationships. In A. K. Goyal (Ed.), Grain legumes (pp. 55–78). Intech Open. https://doi.org/10.5772/64020
  • Sofi, S. A., Singh, J., Chhikara, N., & Panghal, A. (2020). Effect of incorporation of germinated flour and protein isolate from chickpea on different quality characteristics of rice‐based noodle. Cereal Chemistry, 97(1), 85–94. https://doi.org/10.1002/cche.10192
  • Sotelo, A., Hernández, M., Larracilla, J., Arenas, M. L., & Palapa, E. (1987). Use of chickpea (Cicer arietinum L.) in non-dairy formulas. II. Nitrogen balance in children with lactose intolerance, fed with a formula based on chickpea and a commercial soybean product. Archivos Latinoamericanos de Nutricion, 37(3), 468–479.
  • Stewart, J., McCallin, T., Martinez, J., Chacko, S., & Yusuf, S. (2020). Hyperlipidemia. Pediatrics in Review, 41(8), 393–402. https://doi.org/10.1542/pir.2019-0053
  • Stone, A. K., Nosworthy, M. G., Chiremba, C., House, J. D., & Nickerson, M. T. (2019). A comparative study of the functionality and protein quality of a variety of legume and cereal flours. Cereal Chemistry, 96(6), 1159–1169. https://doi.org/10.1002/cche.10226
  • Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S., & Pasqualone, A. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, 103306. https://doi.org/10.1016/j.jfca.2019.103306
  • Tak, Y., Kaur, M., Amarowicz, R., Bhatia, S., & Gautam, C. (2021). Pulse derived bioactive peptides as novel nutraceuticals: A review. International Journal of Peptide Research and Therapeutics, 27(3), 2057–2068. https://doi.org/10.1007/s10989-021-10234-8
  • Tosh, S. M., & Yada, S. (2010). Dietary fibre sin pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International. 43(2), 450–460. https://doi.org/10.1016/j.foodres.2009.09.005
  • Tripathi, A., Iswarya, V., Rawson, A., Singh, N., Oomah, B. D., & Patras, A. (2021). Chemistry of pulses—macronutrients. In Brijesh K. Tiwari, Aoife Gowen & Brian McKenna (Eds.), Pulse foods (pp. 31–59). Academic Press.
  • Valencia, M. E., Troncoso, R., & Higuera, I. (1988). Linear programming formulation and biological evaluation of chickpea-based infant foods. Cereal Chemistry. 65(2), 101–104.
  • Wali, A., Mijiti, Y., Yanhua, G., Yili, A., Aisa, H. A., & Kawuli, A. (2021). Isolation and identification of a novel antioxidant peptide from chickpea (Cicer arietinum L.) sprout protein hydrolysates. International Journal of Peptide Research and Therapeutics, 27(1), 219–227. https://doi.org/10.1007/s10989-020-10070-2
  • Wallace, T., Murray, R., & Zelman, K. (2016). The nutritional value and health benefits of chickpeas and hummus. Nutrients, 8(12), 766. https://doi.org/10.3390/nu8120766
  • Wang, Y. H., & McIntosh, G. H. (1996). Extrusion and boiling improve rat body weight gain and plasma cholesterol lowering ability of peas and chickpeas. The Journal of Nutrition, 126(12), 3054–3062. https://doi.org/10.1093/jn/126.12.3054
  • Wang, Y., Tuccillo, F., Lampi, A.-M., Knaapila, A., Pulkkinen, M., Kariluoto, S., Coda, R., Edelmann, M., Jouppila, K., Sandell, M., Piironen, V., & Katina, K. (2022). Flavor challenges in extruded plant‐based meat alternatives: A review. Comprehensive Reviews in Food Science and Food Safety, 21(3), 2898–2929. https://doi.org/10.1111/1541-4337.12964
  • Wang, Y., Yuan, J. J., Li, K., Chen, X., Wang, Y. T., & Bai, Y. H. (2023). Evaluation of chickpea protein isolate as a partial replacement for phosphate in pork meat batters: Techno-functional properties and molecular characteristic modifications. Food Chemistry, 404(Pt A), 134585. https://doi.org/10.1016/j.foodchem.2022.134585
  • Wangorsch, A., Kulkarni, A., Jamin, A., Spiric, J., Bräcker, J., Brockmeyer, J., Mahler, V., Blanca-Lopez, N., Ferrer, M., Blanca, M., Torres, M., Gomez, P., Bartra, J., García-Moral, A., Goikoetxea, M. J., Vieths, S., Toda, M., Zoccatelli, G., & Scheurer, S. (2020). Identification and characterization of IgE-reactive proteins and a new allergen (Cica1.01) from chickpea (Cicerarietinum). Molecular Nutrition & Food Research. 64(19), 2000560. https://doi.org/10.1002/mnfr.202000560
  • Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311–321. https://doi.org/10.1016/j.diabres.2011.10.029
  • Withana-Gamage, T. S., Wanasundara, J. P., Pietrasik, Z., & Shand, P. J. (2011). Physicochemical, thermal and functional characterization of protein isolates from Kabuli and Desi chickpea (Cicerarietinum L.): A comparative study with soy (Glycine max) and pea (Pisumsativum L.). Journal of the Science of Food and Agriculture, 91(6), 1022–1031. https://doi.org/10.1002/jsfa.4277
  • World Health Organization of the United Nations (WHO). (2022). Surveillance data regarding the occurrence of cancer worldwide. https://www.iarc.who.int/featured-news/colorectal-cancer-awareness-month-2022/
  • Xing, Q., Dekker, S., Kyriakopoulou, K., Boom, R. M., Smid, E. J., & Schutyser, M. A. (2020). Enhanced nutritional value of chickpea protein concentrate by dry separation and solid state fermentation. Innovative Food Science & Emerging Technologies, 59, 102269. https://doi.org/10.1016/j.ifset.2019.102269
  • Xu, B., & Chang, S. K. C. (2009). Phytochemical profiles and health promoting effects of cool-season food legumes as influenced by thermal processing. Journal of Agricultural and Food Chemistry, 57(22), 10718–10731. https://doi.org/10.1021/jf902594m
  • Xu, Y., Thomas, M., & Bhardwaj, H. L. (2014). Chemical composition, functional properties and microstructural characteristics of three kabuli chickpea (C icer arietinum L.) as affected by different cooking methods. International Journal of Food Science & Technology, 49(4), 1215–1223. https://doi.org/10.1111/ijfs.12419
  • Yadav, S. S., Redden, R. J., Chen, W., & Sharma, B. (Eds.). (2007). Chickpea breeding and management (pp. 72–100). Cab International.
  • Yang, Y., Zhou, L., Gu, Y., Zhang, Y., Tang, J., Li, F., Shang, W., Jiang, B., Yue, X., & Chen, M. (2007). Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance in rats induced by a chronic high-fat diet. The British Journal of Nutrition, 98(4), 720–726. https://doi.org/10.1017/S0007114507750870
  • Yegrem, L. (2021). Nutritional composition, antinutritional factors, and utilization trends of Ethiopian chickpea (Cicer arietinum L.). International Journal of Food Science. 2021, 1–10. https://doi.org/10.1155/2021/5570753
  • Zhao, X., Sun, L., Zhang, X., Wang, M., Liu, H., & Zhu, Y. (2021). Nutritional components, volatile constituents and antioxidant activities of 6 chickpea species. Food Bioscience. 41, 100964. https://doi.org/10.1016/j.fbio.2021.100964
  • Zulet, M. A., Macarulla, M. T., Portillo, M. P., Noel-Suberville, C., Higueret, P., & Martínez, J. A. (1999). Lipid and glucose utilization in hypercholesterolemic rats fed a diet containing heated chickpea (Cicer aretinum L.): A potential functional food. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 69(6), 403–411. https://doi.org/10.1024/0300-9831.69.6.403