894
Views
2
CrossRef citations to date
0
Altmetric
Research Article

New evidence for the diversity of mechanisms and protonated Schiff bases formed in the non-enzymatic covalent protein modification (NECPM) of HbA by the hydrate and aldehydic forms of acetaldehyde and glyceraldehyde

, , , & | (Reviewing editor)
Article: 1584955 | Received 25 May 2018, Accepted 05 Feb 2019, Published online: 26 Mar 2019

References

  • Bobadilla, L., Nino, F., & Narasimhan, G. (2005). Predicting and characterizing metal-binding sites using support vector machines. In M. He, G. Narasimhan, & S. Petoukhav (Eds.), Series in Mathematical biology and medicine Volume 8, Advances in bioinformatics and its applications (pp. 307–14). doi:10.1142/9789812702098_0028
  • Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414, 813–820. doi:10.1038/414813a
  • Clark, S. L. D., Santin, A. E., Bryant, P. A., Holman, R. W., & Rodnick, K. J. (2013). The initial non-covalent binding of glucose to human hemoglobin in nonenzymatic glycation. Glycobiology, 23, 1250–1259. doi:10.1093/glycob/cwt061
  • De Benedetto, G. E., & Fanigliulo, M. (2009). A new CE-ESI-MS method for the detection of stable hemoglobin acetaldehyde adducts. Electrophoresis, 30, 1798–1807. doi:10.1002/elps.200800379
  • Dipadova, C., Alderman, J., & Lieber, C. S. (1986). Improved methods for the measurement of acetaldehyde concentrations in plasma and red blood cells. Alcoholism-Clinical and Experimental Research, 10, 86–89. doi:10.1111/j.1530-0277.1986.tb05621.x
  • Gaines, K. C., Salhany, J. M., Tuma, D. J., & Sorrell, M. F. (1977). Reaction of acetaldehyde with human erythrocyte membrane proteins. FEBS Letters, 75, 115–119.
  • Gross, M. D., Gapstur, S. M., Belcher, J. D., Scanlan, G., & Potter, J. D. (1992). The identification and partial characterization of acetaldehyde adducts of hemoglobin occurring in vivo – A possible marker of alcohol consumption. Alcoholism – Clinical and Experimental Research, 16, 1093–1103. doi:10.1111/j.1530-0277.1992.tb00704.x
  • Korsten, M. A., Matsuzaki, S., Feinman, L., & Leiber, C. S. (1975). High blood acetaldehyde levels after ethanol administration: Difference between alcohol and nonalcoholic subjects. New England Journal of Medicine, 292, 386–389. doi:10.1056/NEJM197502202920802
  • Mauch, T. J., Donohue, T. M., Zetterman, R. K., Sorrell, M. F., & Tuma, D. J. (1986). Covalent binding of acetaldehyde selectively inhibits the catalytic activity of lysine-dependent enzymes. Hepatology, 6, 263–269.
  • Molecular Operating Environment (MOE). (2015). Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7. Retrieved from www.chemcomp.com
  • Nacharaju, P., & Acharya, A. S. (1992). Amadori rearrangement potential of hemoglobin at its glycation sites is dependent on the three-dimensional structure of protein. Biochemistry, 31, 12673–12679.
  • O’Brien, P. J., Siraki, A. G., & Shangari, N. (2005). Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Critical Reviews in Toxicology, 35, 609–662.
  • Rodnick, K. J., Holman, R. W., Ropski, P. S., Huang, M., & Swislocki, A. L. M. (2017). A perspective on reagent diversity and non-covalent binding of reactive carbonyl species (RCS) and effector reagents in non-enzymatic glycation (NEG): Mechanistic considerations and implications for future research. Frontiers in Chemistry, 5, 39. doi:10.3389/fchem.2017.00039
  • Roede, J. R., Stewart, B. J., & Petersen, D. R. (2010). Hepatotoxicity of reactive aldehydes. In C. A. McQueen (Ed.), Comprehensive toxicology (Vol. 9, 2nd ed., pp. 581–594). Oxford: Elsevier.
  • Rolla, R., Vay, D., Mottaran, E., Parodi, M., Traverso, N., Arico, S., … Albano, E. (2000). Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease. Hepatology, 31, 878–884. doi:10.1053/he.2000.5373
  • Semchyshyn, H. M. (2014). Reactive carbonyl species in vivo: Generation and dual biological effects. The Scientific World Journal, Article ID 417842. doi:10.1155/2014/417842
  • Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44, 129–146. doi:10.1007/s001250051591
  • Smith, B. A., Mottishaw, C. R., Hendricks, A. J., Mitchell, J., Becker, S., Ropski, P. S., … Rodnick, K. J. (2018). Potential roles of inorganic phosphate on the progression of initially bound glucopyranose toward the nonenzymatic glycation of human hemoglobin: Mechanistic diversity and impacts on site selectivity. Cogent Biology, 4(1), 1425196. doi:10.1080/23312025.2018.1425196
  • Tuma, D. J., Hoffman, T., & Sorrell, M. F. (1991). The chemistry of acetaldehyde-protein adducts. Alcohol and Alcoholism, 1, 271–276.
  • Tuma, D. J., Jennett, R. B., & Sorrell, M. F. (1987). The interaction of acetaldehyde with tubulin. Annals of New York Academy of Sciences, 492, 277–286. doi:10.1111/j.1749-6632.1987.tb48681.x
  • Tuma, D. J., Kearley, M. L., Thiele, G. M., Worrall, S., Haver, A., Klassen, L. W., & Sorrell, M. F. (2001). Elucidation of reaction scheme describing malondialdehyde-acetaldehyde-protein adduct formation. Chemical Research in Toxicology, 14, 822–832.
  • Tuma, D. J., Newman, M. R., Donahue, T. M., & Sorrell, M. F. (1987). Covalent binding of acetaldehyde to proteins: Participation of lysine residues. Alcoholism Clinical and Experimental Research, 11, 579–584. doi:10.1111/j.1530-0277.1987.tb00178.x
  • Vispää, J. P., Tillonen, J., & Salaspuro, M. (2002). Microbes and mucosa in the regulation of intracolonic acetaldehyde concentration during ethanol challenge. Alcohol and Alcoholism, 37, 322–326.