1,169
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the therapeutic potential and underlying mechanisms of synephrine, a component of Kampo medicine, against allergic rhinitis

, , , & | (Reviewing editor)
Article: 1592274 | Received 08 Oct 2018, Accepted 05 Mar 2019, Published online: 14 Apr 2019

References

  • Akasaki, S., Matsushita, K., Kato, Y., Fukuoka, A., Iwasaki, N., Nakahira, M., … Yoshimoto, T. (2016). Murine allergic rhinitis and nasal Th2 activation are mediated via TSLP- and IL-33-signaling pathways. International Immunology, 28(2), 65–16.
  • Ali, M. S. (2009). Nasosinus mucin expression in normal and inflammatory conditions. Current Opinion in Allergy and Clinical Immunology, 9(1), 10–15. doi:10.1097/ACI.0b013e32831d815c
  • Ali, M. S., & Pearson, J. P. (2007). Upper airway mucin gene expression: A review. Laryngoscope, 117(5), 932–938. doi:10.1097/MLG.0b013e3180383651
  • Baba, S. (1995). Double-blind clinical trial of sho-seiryu-to (TJ-19) for perennial nasal allergy. Practica oto-rhino-laryngologica, 88(3), 389–405. doi:10.5631/jibirin.88.389
  • Bachert, C., Hauser, U., Prem, B., Rudack, C., & Ganzer, U. (1995). Proinflammatory cytokines in allergic rhinitis. European Archives of Oto-Rhino-Laryngology, 252, S44–S49. doi:10.1007/BF02484434
  • Benson, M., Adner, M., & Cardell, L. O. (2001). Cytokines and cytokine receptors in allergic rhinitis: How do they relate to the Th2 hypothesis in allergy? Clinical & Experimental Allergy, 31(3), 361–367. doi:10.1046/j.1365-2222.2001.01045.x
  • Dale, H. H., & Laidlaw, P. P. (1910). The physiological action of β-iminazolylethylamine. Journal of Physiology, 41(5), 318–344. doi:10.1113/jphysiol.1910.sp001406
  • Fransson, M., Adner, M., Erjefalt, J., Jansson, L., Uddman, R., & Cardell, L. O. (2005). Up-regulation of toll-like receptors 2, 3 and 4 in allergic rhinitis. Respiratory Research, 6(1), 100. doi:10.1186/1465-9921-6-100
  • Ishibashi, Y., Kobayashi, F., Idesawa, A., Taniguchi, A., & Matsuzawa, S. (2004). Effects of carbocisteine on altered activities of glycosidase and glycosyltransferase and expression of muc5ac in SO2-exposed rats. European Journal of Pharmacology, 487(1–3), 7–15. doi:10.1016/j.ejphar.2003.12.038
  • Kato, A., Favoreto, S., Jr., Avila, P. C., & Schleimer, R. P. (2007). TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. Journal of Immunology, 179(2), 1080–1087. doi:10.4049/jimmunol.179.2.1080
  • Kubo, M., Yano, M., & Matsuda, H. (1989). Pharmacological study on citrus fruits. I. Anti-allergic effect of fruit of citrus unshiu markovich. Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan, 109(11), 835–842. doi:10.1248/yakushi1947.109.11_835
  • Lee, H. J., Kim, B., Im, N. R., Lee, D. Y., Kim, H. K., Lee, S. H., … Kim, T. H. (2016). Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: Altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha. American Journal of Rhinology & Allergy, 30(3), 173–178. doi:10.2500/ajra.2016.30.4295
  • Nakaya, M., Takeuchi, N., & Kondo, K. (2004). Immunohistochemical localization of histamine receptor subtypes in human inferior turbinates. Annals of Otology, Rhinology, and Laryngology, 113(7), 552–557. doi:10.1177/000348940411300707
  • Ordonez, C. L., Khashayar, R., Wong, H. H., Ferrando, R., Wu, R., Hyde, D. M., … Fahy, J. V. (2001). Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. American Journal of Respiratory and Critical Care Medicine, 163(2), 517–523. doi:10.1164/ajrccm.163.2.2004039
  • Phillips, P. P., McCaffrey, T. V., & Kern, E. B. (1990). The in vivo and in vitro effect of phenylephrine (neo synephrine) on nasal ciliary beat frequency and mucociliary transport. Otolaryngology–Head and Neck Surgery, 103(4), 558–565. doi:10.1177/019459989010300406
  • Roh, K. B., Kim, I. H., Kim, Y. S., Lee, M., Lee, J. A., Jung, E., … Park, D. (2014). Synephrine inhibits eotaxin-1 expression via the STAT6 signaling pathway. Molecules, 19(8), 11883–11895. doi:10.3390/molecules190811211
  • Schaper, K., Rossbach, K., Köther, B., Stark, H., Kietzmann, M., Werfel, T., … Gutzmer, R. (2016). Stimulation of the histamine 4 receptor upregulates thymic stromal lymphopoietin (TSLP) in human and murine keratinocytes. Pharmacological Research, 113, 209–215. doi:10.1016/j.phrs.2016.08.001
  • Shah, S. A., Ishinaga, H., Hou, B., Okano, M., & Takeuchi, K. (2013). Effects of interleukin-31 on MUC5AC gene expression in nasal allergic inflammation. Pharmacology, 91(3–4), 158–164. doi:10.1159/000346609
  • Shimizu, T., Hirano, H., Majima, Y., & Sakakura, Y. (2000). A mechanism of antigen-induced mucus production in nasal epithelium of sensitized rats: A comparison with lipopolysaccharide-induced mucus production. American Journal of Respiratory and Critical Care Medicine, 161(5), 1648–1654. doi:10.1164/ajrccm.161.6.9909098
  • Shimizu, T., Shimizu, S., Hattori, R., & Majima, Y. (2003). A mechanism of antigen-induced goblet cell degranulation in the nasal epithelium of sensitized rats. Journal of Allergy and Clinical Immunology, 112(1), 119–125. doi:10.1067/mai.2003.1512
  • Shirasaki, H. (2008). Cysteinyl leukotriene receptor cysLT1 as a novel therapeutic target for allergic rhinitis. Expert Opinion on Therapeutic Targets, 12(4), 415–423. doi:10.1517/14728222.12.4.415
  • Shirasaki, H., Kanaizumi, E., Seki, N., & Himi, T. (2015). Leukotriene E4 induces MUC5AC release from human airway epithelial NCI-H292 cells. Allergology International, 64(2), 169–174. doi:10.1016/j.alit.2014.11.002
  • Tyurin, Y. A., Lissovskaya, S. A., Fassahov, R. S., Mustafin, I. G., Shamsutdinov, A. F., Shilova, M. A., … Rizvanov, A. A. (2017). Cytokine profile of patients with allergic rhinitis caused by pollen, mite, and microbial allergen sensitization. Journal of Immunology Research, 2017, 3054217. doi:10.1155/2017/5974574
  • Voynow, J. A., Selby, D. M., & Rose, M. C. (1998). Mucin gene expression (MUC1, MUC2, and MUC5/5AC) in nasal epithelial cells of cystic fibrosis, allergic rhinitis, and normal individuals. Lung, 176(5), 345–354. doi:10.1007/PL00007616