837
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Population and biomarker responses of Daphnia magna towards anticholinesterase exposures

& | (Reviewing editor)
Article: 1616363 | Received 17 Jan 2019, Accepted 03 May 2019, Published online: 15 May 2019

References

  • ASTM (International Association for Testing Materials). (2016). E1366-11 (Reapproved 2016). Standard Practice for Standardized Aquatic Microcosms: Fresh Water.
  • Avila, T. R., de Souza Machado, A. A., & Bianchini, A. (2012). Estimation of zooplankton secondary production in estuarine waters: Comparison between the enzymatic (chitobiase) method and mathematical models using crustaceans. Journal of Experimental Marine Biology and Ecology, 416/417, 144–22. doi:10.1016/j.jembe.2012.02.015
  • Baldwin, K. M., & Bowers, B. (1995). Isolation of N-Acetyl-ß-Hexosaminidase from Acanthamoeba castellanii. Journal of Eukaryotic Microbiology, 42(3), 231–242.
  • Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Analytical Biochemistry, 72(2), 248–254. doi:10.1016/0003-2697(76)90527-3
  • Calabrese, E. J. (2015). Hormesis: Principles and applications. Homeopathy, 104(2), 69–82. doi:10.1016/j.homp.2015.02.007
  • Choi, J. Y., Yu, J., Yang, D. B., Ra, K. T., Kim, K. T., Hong, G. H., & Shin, K. H. (2011). Acetylthiocholine (ATC)- cleaving cholinesterase (ChE) activity as a potential biomarker of pesticide exposure in the Manila clam, Ruditapes philippinarum, of Korea. Marine Environmental Research, 71(3), 162–168. doi:10.1016/j.marenvres.2010.12.007
  • Choung, C. B., Hyne, R. V., Stevens, M. M., & Hose, G. C. (2013). The ecological effects of a herbicide-insecticide mixture on an experimental freshwater ecosystem. Environmental Pollution, 172, 264–274. doi:10.1016/j.envpol.2012.09.002
  • Cohen, E.(2010). Chitin biochemistry: Synthesis, hydrolysis and inhibition. Advances in Insect Physiology, 38, 5–74.
  • Daam, M. A., Crum, S. J., Van Den Brink, P. J., & Nogueira, A. J. A. (2008). Fate and effects of the insecticide chlorpyrifos in outdoor plankton-dominated microcosms in Thailand. Environmental Toxicology and Chemistry, 27(12), 2530–2538. doi:10.1897/07-628.1
  • Daam, M. A., & Van Den Brink, P. J. (2007). Effects of chlorpyrifos, carbendazim, and linuron on the ecology of a small indoor aquatic microcosm. Archives of Environmental Contamination and Toxicology, 53(1), 22–35. doi:10.1007/s00244-006-0001-y
  • Denoyelle, R., Rault, M., Mazzia, C., Mascle, O., & Capowiez, Y. (2007). Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environmental Toxicology and Chemistry, 26(12), 2644–2649. doi:10.1897/06-355.1
  • Diamantino, T. C., Almeida, E., Soares, A. M. V. M., & Guilhermino, L. (2003). Characterization of cholinesterases from Daphnia magna straus and their inhibition by zinc. Bulletin of Environmental Contamination and Toxicology, 71, 219–225. doi:10.1007/s00128-003-0153-7
  • Dong, L., & Dong, Y. (2008). Determination of chlorpyrifos in water samples using solid-phase extraction and gas chromatography. Analysis & Testing Technology & Instruments, 14(1), 30–33.
  • Duchet, C., Inafuku, M. M., Caquet, T., Larroque, M., Franquet, E., Lagneau, C., & Lagadic, L. (2011). Chitobiase activity as an indicator of altered survival, growth and reproduction in Daphnia pulex and Daphnia magna (Crustacea: Cladocera) exposed to spinosad and diflubenzuron. Ecotoxicology and Environmental Safety, 74, 800–810. doi:10.1016/j.ecoenv.2010.11.001
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
  • Gad, N. S. (2009). Determination of glutathione related enzymes and cholinesterase activities in Oreochromis niloticus and Clarias gariepinus as bioindicator for pollution in Lake Manzala. Global Veterinaria, 3(1), 37–44.
  • Hanson, M. L., & Lagadic, L. (2005). Chitobiase activity as an indicator of aquatic ecosystem health. Aquatic Ecosystem Health & Management, 8(4), 441–450. doi:10.1080/14634980500360084
  • Hilt, S., & Gross, E. M. (2008). Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology, 9, 422–432. doi:10.1016/j.baae.2007.04.003
  • Jemec, A., Drobne, D., Tišler, T., & Sepčić, K. (2010). Biochemical biomarkers in environmental studies: Lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environmental Science and Pollution Research, 17, 571–581. doi:10.1007/s11356-009-0112-x
  • Kanno, A., Nishi, I., Kishi, T., Kawakami, T., Takahashi, Y., & Onodera, S. (2010). Cholinesterase-inhibiting potentials of amberlite XAD-2 resin extracts collected from river and drinking waters in Northwest district of Chiba Prefecture, Japan. Journal of Health Science, 56(6), 664–674. doi:10.1248/jhs.56.664
  • Kawakami, T., Takezawa, A., Nishi, I., Watanabe, E., Ishizaka, M., Eun, H., & Onodera, S. (2008). Monitoring of cholinesterase-inhibiting activity in water from the Tone canal, Japan, as a biomarker of ecotoxicity. Ecotoxicology, 17(4), 221–228. doi:10.1007/s10646-007-0188-3
  • Kirby, M. F., Morris, S., Hurst, M., Kirby, S. J., Neall, P., Tylor, T., & Fagg, A. (2000). The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Marine Pollution Bulletin, 40(9), 780–791. doi:10.1016/S0025-326X(00)00069-2
  • Lam, P. K. S. (2009). Use of biomarkers in environmental monitoring. Ocean & Coastal Management, 52, 348–354. doi:10.1016/j.ocecoaman.2009.04.010
  • Lang, Q. (2016). Impart of chlorpyrifos on population development, ChE activity, and NAGase release of Daphnia magna (pp. 11–26). Hangzhou: Zhejiang University.
  • Liu, F., Liu, Y., Zhao, Y., Sen, J., & Zhu, G. (2013). Indoor microcosms study on ecological effects of rice paddy applied with chlorpyrifos on zooplankton in south China. Chinese Journal of Pesticide Science, 15(2), 198–203.
  • Liu, H., Yuan, B., & Li, S. (2012). Altered quantities and in vivo activities of cholinesterase from Daphnia magna in sub-lethal exposure to organophosphorus insecticides. Ecotoxicology and Environmental Safety, 80, 118–125. doi:10.1016/j.ecoenv.2012.02.014
  • Liu, H., Yuan, B., & Li, S. (2016). Developing antibodies from cholinesterase derived from prokaryotic expression and testing their feasibility for detecting immunogen content in Daphnia magna. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 17(2), 110–126. doi:10.1631/jzus.B1500008
  • López-Mancisidor, P., Carbonell, G., Marina, A., Fernández, C., & Tarazona, J. V. (2008). Zooplankton community responses to chlorpyrifos in mesocosms under Mediterranean conditions. Ecotoxicology and Environmental Safety, 71, 16–25. doi:10.1016/j.ecoenv.2007.06.006
  • Mena, F., Azzopardi, M., Pfennig, S., Ruepert, C., Tedengren, M., Castillo, L. E., & Gunnarsson, J. S. (2014). Use of cholinesterase activity as a biomarker of pesticides exposure used on Costa Rican banana plantations in the native tropical fish Astyanax aeneus (Gunther, 1860). Journal of Environmental Biology, 35(1), 35–42.
  • OECD (Organization for Economic Co-operation and Development). (2012 October, 2). OECD Guideline For Testing of Chemicals: Daphnia magna Reproduction Test, pp. 211. doi:10.1094/PDIS-11-11-0999-PDN
  • Qi, S., Wang, C., Chen, X., Qin, Z., Li, X., & Wang, C. (2013). Toxicity assessments with Daphnia magna of guadipyr, a new neonicotinoid insecticide and studies of its effect on acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT) and chitobiase activities. Ecotoxicology and Environmental Safety, 98, 339–344. doi:10.1016/j.ecoenv.2013.09.013
  • Sastri, A. R., & Dower, J. F. (2006). Field validation of an instantaneous estimate of in situ development and growth for marine copepod communities. Canadian Journal of Fisheries and Aquatic Sciences, 63, 2639–2647. doi:10.1139/f06-149
  • Sastri, A. R., & Dower, J. F. (2009). Interannual variability in chitobiase-based production rates of the crustacean zooplankton community in the strait of Georgia. Marine Ecology Progress Series, 388, 147–157. doi:10.3354/meps08111
  • Sastri, A. R., Juneau, P., & Beisner, B. E. (2013). Evaluation of chitobiase-based estimates of biomass and production rates for developing freshwater crustacean zooplankton communities. Journal of Plankton Research, 35(2), 407–420. doi:10.1093/plankt/fbs104
  • Sastri, A. R., Nelson, R. J., Varela, D. E., Young, K. V., Wrohan, I., & Williams, W. J. (2012). Variation of chitobiase-based estimates of crustacean zooplankton production rates in high latitude waters. Journal of Experimental Marine Biology and Ecology, 414/415, 54–61. doi:10.1016/j.jembe.2012.01.012
  • Sastri, A. R., & Roff, J. C. (2000). Rate of chitobiase degradation as a measure of development rate in planktonic Crustacea. Canadian Journal of Fisheries and Aquatic Sciences, 57, 1965–1968. doi:10.1139/f00-174
  • Suchy, K. D., Avila, T. R., Dower, J. F., Bianchini, A., & Figueiredo, G. M. (2016). Short-term variability in chitobiase-based planktonic crustacean production rates in a highly eutrophic tropical estuary. Marine Ecology Progress Series, 545, 77–89. doi:10.3354/meps11637
  • Sumon, K. A., Rashid, H., Peeters, E. T. H. M., Bosma, R. H., & Van Den Brink, P. J. (2018). Environmental monitoring and risk assessment of organophosphate pesticides in aquatic ecosystems of north-west Bangladesh. Chemosphere, 206, 92–100. doi:10.1016/j.chemosphere.2018.04.167
  • Tang, Q. (2013). DPS© Data Processing System, volume 1, essential statistics and experimental designs (3rd ed.). Beijing, China: Science Press Ltd.
  • Ter Braak, C. J. F., & Šmilauer, P. (2012). Canoco reference manual and user’s guide: Software for ordination (version 5.0). Ithaca, NY, USA: Microcomputer Power.
  • Van Den Brink, P. J., Crum, S. J. H., Gylstra, R., Bransen, F., Cuppen, J. G. M., & Brock, T. C. M. (2009). Effects of a herbicide–Insecticide mixture in freshwater microcosms: Risk assessment and ecological effect chain. Environmental Pollution, 157, 237–249. doi:10.1016/j.envpol.2008.07.012
  • Van Wijngaarden, R. P., Brock, T. C., & Douglas, M. T. (2005). Effects of chlorpyrifos in freshwater model ecosystems: The influence of experimental conditions on ecotoxicological thresholds. Pest Management Science, 61(10), 923–935. doi:10.1002/ps.1084
  • Vrba, J., Callieri, C., Bittl, T., Šimek, K., Bertoni, R., Filandr, P., … Nedoma, J. (2004). Are bacteria the major producers of extracellular glycolytic enzymes in aquatic environments? International Review of Hydrobiology, 89(1), 102–117. doi:10.1002/(ISSN)1522-2632
  • Vrba, J., Kofroňova-Bobková, J., Pernthaler, J., Simek, K., Macek, M., & Psenner, R. (1997). Extracellular, low-affinity ß-N-acetylglucosaminidases linked to the dynamics of diatoms and crustaceans in freshwater systems of different trophic degree. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 82(2), 277–286. doi:10.1002/iroh.19970820213
  • Vrba, J., & Machácek, J. (1994). Release of dissolved extracellular β-N-acetylglucosaminidase during crustacean moulting. Limnology and Oceanography, 39, 712–716. doi:10.4319/lo.1994.39.3.0712
  • Vrba, J., Šimek, K., Nedoma, J., & Hartman, P. (1993). 4-methylumbelliferyl-ß-N-acetylglucosaminide hydrolysis by a high-affinity enzyme, a putative marker of protozoan bacterivory. Applied and Environmental Microbiology, 59, 3091–3101.
  • Wu, C., Zhao, X., Wu, S., Chen, L., Wang, Y., Wang, Q., & Wu, M. (2011). Pollution of water body by chlorpyrifos used in paddy rice field in hilly areas and its ecological risk. Journal of Ecology and Rural Environment, 27(3), 108–112.
  • Xiao, P., Liu, Y., Yao, S., & Zhu, G. (2017). Effects of pesticide mixtures on zooplankton assemblages in aquatic microcosms simulating rice paddy fields. Bulletin of Environmental Contamination Toxicology, 99, 27–32. doi:10.1007/s00128-017-2105-7
  • Xing, H., Wu, H., Sun, G., Zhang, Z., Xu, S., & Li, S. (2013). Alterations in activity and mRNA expression of acetylcholinesterase in the liver, kidney and gill of common carp exposed to atrazine and chlorpyrifos. Environmental Toxicology and Pharmacology, 35:, 47–54. doi:10.1016/j.etap.2012.11.004
  • Yang, Y., Niu, L., & Li, S. (2013). Purification and studies on characteristics of cholinesterases from Daphnia magna. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 14(4), 325–335. doi:10.1631/jzus.B1200113
  • Yebra, L., Kobari, T., Sastri, A. R., Gusmão, F., & Hernández-León, S. (2017). Chapter four: Advances in biochemical indices of zooplankton production. Advances in Marine Biology, 76, 157–240. doi:10.1016/bs.amb.2016.09.001
  • Zafar, M. I., van Wijngaarden, R. P. A., Roessink, I., & van Den Brink, P. J. (2011). Effects of time-variable exposure regimes of the insecticide chlorpyrifos on freshwater invertebrate communities in microcosms. Envirmental Toxicology and Chemistry, 30(6), 1383–1394. doi:10.1002/etc.509
  • Zeng, C., & Li, S. (2013). Dynamic characters of β-N-acetyl-D-glucosaminidase purified from Daphnia magna. Zhejiang Agricultural Science, (9), 1151–1156.
  • Zhou, M., Zhang, C., Richard, P., & Haugland, R. P. (2000). Choline oxidase: A useful tool for high-throughput assays of acetylcholinesterase, phospholipase D, phosphayidylcholine-specific phospholipase C, and sphingomyelinase. Proceedings of SPIE, 3926, 166–171.
  • Zubkov, M. V., & Sleigh, M. A. (1998). Heterotrophic nanoplankton biomass measured by a glucosaminidase assay. FEMS Microbiology Ecology, 25, 97–109. doi:10.1111/j.1574-6941.1998.tb00463.x