1,188
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Rhizospheric bacteria from pristine grassland have beneficial traits for plant growth promotion in maize (Zea mays L.)

, & | (Reviewing editor)
Article: 1630972 | Received 02 Jan 2019, Accepted 10 Jun 2019, Published online: 28 Jun 2019

References

  • Ahmad, F. L., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–114.
  • Arzanlou, M., Mousavi, S., Bakhshi, M., Khakvar, R., & Bandehagh, A. (2016). Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants, on Cercospora beticola Sacc., the causal agent of Cercospora leaf spot disease- on sugar beet. Journal of Plant Protection Research, 56(1), 6–14. doi:10.1515/jppr-2016-0002
  • Asghar, H. N., Zahir, Z. A., Khaliq, A., & Arshad, M. (2000). Assessment of auxin production from rhizobacteria isolated form different varieties of rapeseed. Pakistan Journal of Agricultural Sciences, 37, 101–104.
  • Berge, O., Heulin, T., & Balandreau, J. (1991). Diversity of diazotrophs populations in the rhizosphere of maize (Zea mays L.) growing on different French soils. Biology and Fertility of Soils, 11, 210–215. doi:10.1007/BF00335769
  • Bevivino, A., Dalmastri, C., Tabacchioni, S., & Chiarini, L. (2000). Efficacy of Burkholderia cepacia MCI 7 in disease suppression and growth promotion of maize. Biology and Fertility of Soils, 31, 225–231.
  • Bjelic, D., Marinkovic, J., Tintor, B., & Mrkovacki, N. (2018). Antifungal and plant growth promoting activities of indigenous rhizobacteria isolated from maize (Zea mays L.) rhizosphere. Communications in Soil Science and Plant Analysis, 49(1), 88–98. doi:10.1080/00103624.2017.1421650
  • Boukhalfa, H., & Crumbliss, A. L. (2002). Chemical aspects of siderophores mediated iron transport. Biometals, 15, 325–339.
  • Budzikiewicz, H. (1997). Siderophores of fluorescent pseudomonads. Invited Trends Article, 52c, 713–720.
  • Caballero-Mellado, J. J., Onofre-Lemus, P., Estrada-de los Santos, S., & Martinez-Aguilar, L. (2007). The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Applied and Environmental Microbiology, 73, 5308–5319.
  • Chiarini, L., Bevivino, A., Tabacchioni, S., & Dalmastri, C. (1998). Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: Root colonization and plant growth promotion of dual strain inocula. Soil Biology and Biochemistry, 30, 81–87. doi:10.1016/S0038-0717(97)00096-5
  • Da Silva, P. R. A., Vidal, M. S., De Paula Soares, C., Polese, V., Simoes-Araujo, J. L., & Baldani, J. I. (2016). Selection and evaluation of reference genes for RT-qPCR expression studies on Burkholderia tropica strain Ppe8, a sugarcane-associated diazotrophic bacterium grown with different carbon sources or sugarcane juice. Antonie Van Leeuwenhoek, 109(11), 1493–1502. doi:10.1007/s10482-016-0751-0
  • Das, K., Katiyar, V., & Goel, R. (2003). ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiological Research, 158(4), 359–362. doi:10.1078/0944-5013-00217
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleynden, J., & Dutto, P., .... Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azosprillum. Australian Journal of Plant Physiology, 28, 871–879.
  • Dos Santos, C. L. R., Alves, G. C., De Matos Macedo, A. V., Giori, F. G., Pereira, W., Urquiaga, S., & Reis, V. M. (2017). Contribution of a mixed inoculant containing strains of Burkholderia spp. and Herbaspirillum spp. to the growth of three sorghum genotypes under increased nitrogen fertilization levels. Applied Soil Ecology, 113, 96–106. doi:10.1016/j.apsoil.2017.02.008
  • Du Plessis, J. (2003) Maize production report. Department of agriculture, directorate agricultural. Information Services Private Bag X144, Pretoria, 0001 South Africa, pp. 38.
  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340
  • Frey-klett, P., Chavarte, M., Clausse, M. L., Courier, S., Le-Roux, C., Raaijmakers, J., … Garbaye, J. (2005). Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytologist, 165, 317–328. doi:10.1111/j.1469-8137.2004.01212.x
  • Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A., & Young, J. P. W. (2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. International Journal of Systematic and Evolutionary Microbiology, 51, 2037–2048. doi:10.1099/00207713-51-6-2037
  • Gopalakrishnan, S., Srinivas, V., Alekhya, G., Prakash, B., Kudapa, H., Rathore, A., & Varshney, R. K. (2015). The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springer Plus, 4, 1–10. doi:10.1186/2193-1801-4-1
  • Goudaa, S., Kerryb, R. G., Dasc, G., Paramithiotisd, S., Shine, H.-S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140. doi:10.1016/j.micres.2017.08.016
  • Govindarajan, M., Balandreau, J., Muthukumarasamy, R., Revathi, G., & Lakshminarasimhan, C. (2006). Improved yield of micro propagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant and Soil, 280, 239–252. doi:10.1007/s11104-005-3223-2
  • Granada, C., Costa, P. B., Lisboa, B. B., Vargas, L. K., & Passaglia, L. M. P. (2013). Comparison among bacterial communities present in arenized and adjacent areas subjected to different soil management regimes. Plant and Soil, 373, 339–358. doi:10.1007/s11104-013-1796-8
  • Grobelak, A., & Hiller, J. (2017). Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. International Journal of Phytoremediation, 19, 825–833. doi:10.1080/15226514.2017.1290581
  • Hamidi, A., Ghalavand, A., Dehghan-shoar, M., Malakuti, M. J., & Asgharzadeh, A. (2008). The effects of application of plant growth promoting rhizobacteria (PGPR) on the yield of fodder maize (Zea mays L.). Journal of Pajouhesh Sazandegi, 70, 16–22.
  • Hassen, A. I., & Labuschagne, N. (2010). Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World Journal of Microbiology and Biotechnology, 26(10), 1837–1846. doi:10.1007/s11274-010-0365-z
  • Hodge, A., Robinson, D., & Fitter, A. (2000). Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 5, 304-308.
  • Kalam, S., Das, S. N., Basu, A., & Podile, A. R. (2016). Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR)in the rhizosphere. Journal of Basic Microbiology, 57, 376–385. doi:10.1002/jobm.201600588
  • Khan, N., Bano, A., & Zandi, P. (2018). Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance. Journal of Plant Interaction, 13, 239–247. doi:10.1080/17429145.2018.1471527
  • Kirsten, J., Townsend, R., & Gibson, C. (1998). Determination of agricultural production to household nutritional status in Kwazulu Natal. Development Southern Africa, 15, 573–587. doi:10.1080/03768359808440032
  • Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7, 39–44. doi:10.1016/0167-7799(89)90057-7
  • Koch, R. (1883). Uber die neuen Untersuchungsmethoden zum Nachweis der Mikrokosmen in Boden, Luft und Wasser Vortrag auf dem XI. Deutschen Arztetag in Berlin, Vereinsblatt fur Deutschland, Komnussions-Verlag von F. C. W. Vogel. Leipzig, 137, 274–284.
  • Kumar., A., Devi, S., Patil, S., Payal, C., & Negi, S. (2012). Isolation, screening and characterization of bacteria from rhizospheric soils for different plant growth promotion (PGP) activities: An in vitro study. Research in Science and Technology, 4, 01–05.
  • Kumar, A., Maurya1, B. R., Raghuwanshi, R., Meena1, V. S., & Islam, M. T. (2017). Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic Plain of India. Plant Growth Regulation, 36, 608–617. doi:10.1007/s00344-016-9663-5
  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874. doi:10.1093/molbev/msw054
  • Lakshmanan, V., Gopinath, S., & Harsh, P. B. (2014). Functional soil microbiome: Below ground solutions to an above ground problem. Plant Physiology, 166, 689–700.
  • Lindow, E., Desurmont, C., Elkins, R., Mc Crout, G., Clark, E., & Maria, T. B. (1998). Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. Phytopathology, 88, 1149–1157. doi:10.1094/PHYTO.1998.88.11.1149
  • Linu, M. S., Stephen, J., & Jisha, M. S. (2009). Phosphate solublizing Gluconacetobacter sp., Burkholderia sp. and their potential interaction with cowpea (Vigna unguiculata (L.) Walp.). International Journal of Agricultural Research, 4, 79–87. doi:10.3923/ijar.2009.79.87
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting-rhizobacteria. Annual Review of Microbiology, 63, 541–55.
  • Luvizotto, D., Marcon, J., Andreote, F., Dini-Andreote, F., Neves, A., Araújo, W., Pizzirani-Kleiner, A. (2010). Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World Journal of Microbiology and Biotechnology, 26, 1829–1836.
  • Mantelin, S., & Touraine, B. (2004). Plant growth-promoting bacteria and nitrate availability: Impacts on root development and nitrate uptake. Journal of Experimental Botany, 1–8.
  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Review, 37, 634–663.
  • Meyer, J. M. (2000). Pyoverdines: Pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archives in Microbiology, 174, 135–142.
  • Moe, L. A. (2013). Amino acids in the rhizosphere: From plants to microbes. American Journal of Botany, 100, 1692–1705.
  • Peix, A., Rivas, R., Santa-Regina, Mateos, P., Martı´nez-Molina, F., Rodrı´guez-Barrueco, E., & Vela´zquez, C., E. (2004). Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International Journal of Systematic and Evolutionary Microbiology, 54, 847–850.
  • Penrose, D. M. & Glick B. R. (2003). Methods for isolating and characterizing ACC-deaminase containing plant growth promoting rhizobacteria. Physiologia Plantarum, 118, 10–15.
  • Pereira, T. P., Do Amaral, F. P., Dall’Asta, P., Brod, F. C., & Arisi, A. C. (2014). Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae strain SmR1 in maize roots. Molecular Biotechnology, 56(7), 660–670. doi:10.1007/s12033-014-9742-4
  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370.
  • Poupin, M. J., Timmermann, T., Vega, A., Zuniga, A., & Gonzalez, B. (2013). Effects of the plant growth promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PloS One, 8, e69435 10. doi:10.1371/journal.pone.0069435
  • Puente, M. E., Li, C. Y., & Bashan, Y. (2004). Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biology, 6(5), 643–650. doi:10.1055/s-2004-821101
  • Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moenne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield of soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361. doi:10.1007/s11104-008-9568-6
  • Ribeiro, C. M., & Cardoso, E. J. (2012). Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiological Research, 167, 69–78. doi:10.1016/j.micres.2011.03.003
  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62, 21–30.
  • SAS Institute. (2003). SAS/ STAT guide for personal computer. Cary: SAS Institute.
  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for detection and determination of siderophores. Annual Review of Biochemistry, 160, 47–56. doi:10.1016/0003-2697(87)90612-9
  • Sharma, A., & Johri, B. N. (2003). Combat of iron-deprivation through a plant growth promoting Fluorescent Pseudomonas strain GRP3A in mung bean. Microbiological Research, 158, 77–81. doi:10.1078/0944-5013-00182
  • Shobha, G., & Kumudini, B. S. (2012). Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. International Journal of Applied Science and Engineering Research, 1, 463–474. doi:10.6088/ijaser.0020101047
  • Singh, B. K., Munro, S., Potts, J. M., & Millard, P. (2007). Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Applied Soil and Ecology, 36, 147–155. doi:10.1016/j.apsoil.2007.01.004
  • Singh, J. S. (2013). Plant growth promoting rhizobacteria. Resonance, 18, 275–281.
  • Singh, R. P., & Jha, P. N. (2016). The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PloS One, 11(6), e0155026. doi:10.1371/journal.pone.0155026
  • Sreevidya, M., Gopalakrishnan, S., Kudapa, H., & Varshney, R. (2016). Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology, 47, 85–95. doi:10.1016/j.bjm.2015.11.030
  • Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A.-C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49. doi:10.3389/fpls.2017.00049
  • Wahyudi, A. T., Astuti, R. P., Widyawati, A., Meryandin, A., & Nawangsih, A. A. (2011). Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. Journal of Microbiology and Antimicrobials, 3, 34–40.
  • Walker, V., Couillerot, O., Felton, A. V., Belvert, F., Jansa, J., & Maurhofer, M., ….Comte, G. (2012). Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azosprillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, 356, 151–163.
  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703. doi:10.1128/jb.173.2.697-703.1991
  • Weller, D. M., Landa, B. B., Mavrosidi, O. V., Schroender, K. L., De la Fuentel, L., Blouin-Bankhead, S., … Thomashow, L. S. (2007). Role of 2, 4-diacetyl phloroglucinol producing Fluorescent pseudomonas spp. In plant defense. Plant Biology, 9, 4–20. doi:10.1055/s-2006-924473
  • Yazdani, M., Bahmanyar, A. M., Pirdashti, H., & Esmaili, A. M. (2009). Effects of phosphate solubilisation microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield components of corn (Zea mays L.). World Academy of Science Engineering and Technology, 49, 90–92.
  • Young, L., Hameed, A., Peng, S., Shan, Y., & Wu, S. P. (2013). Endophytic establishment of the soil isolate Burkholderia sp. Cc-al74 enhances growth and P-utilization rate in maize (Zea mays L.). Applied Soil Ecology, 66, 40–47.
  • Zahid, M., Abbasi, M. K., Hameed, S., & Rahim, N. (2015). Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Frontiers in Microbiology, 6, 20. doi:10.3389/fmicb.2015.00207
  • Zhao, L. F., Xu, Y. J., Ma, Z. Q., Deng, Z. S., Shan, C. J., & Wei, G. H. (2013). Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology, 44(2), 629–637. doi:10.1590/S1517-83822013000200043
  • Zuo, Y., & Zhang, F. (2011). Soil and crop management strategies to prevent iron deficiency in crops. Plant and Soil, 339, 83–95. doi:10.1007/s11104-010-0566-0