4,963
Views
7
CrossRef citations to date
0
Altmetric
PLANT SCIENCES

Tree species diversity and its relationship with carbon stock in the parkland agroforestry of Northern Ethiopia

ORCID Icon & | (Reviewing editor)
Article: 1728945 | Received 04 Sep 2019, Accepted 04 Feb 2020, Published online: 17 Feb 2020

References

  • Abebe, T. (2005). Diversity in homegarden agroforestry systems of Southern Ethiopia (PhD dissertation). The Netherlands: Wageningen University.
  • Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99, 15–19. doi:10.1016/S0167-8809(03)00138-5
  • Atta-Krah, K., Kindt, R., Skilton, J., & Amaral, W. (2004). Managing biological and genetic diversity in tropical agroforestry. In New Vistas in Agroforestry (pp. 183–194). Springer. doi:10.1007/978-94-017-2424-1_13
  • Baishya, R., Barik, S. K., & Upadhaya, K. (2009). Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Tropical Ecology, 50, 295.
  • Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems. Hoboken Australia: Blackwell Publishers.
  • Bein, E., Habte, B., Jaber, A., Birnie, A., & Tengnäs, B. (1996). Useful trees and shrubs in Eritrea: Identification, propagation and management for agricultural and pastoral communities. In Technical handbook (pp. 422). Nairobi, Kenya.
  • Bekele-Tesemma, A., & Tengnäs, B. (2007). Useful trees and shrubs of Ethiopia: Identification, propagation, and management for 17 agroclimatic zones, RELMA in ICRAF Project. Eastern Africa Region: World Agroforestry Centre.
  • Bengtsson, J. (1998). Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function. Applied Soil Ecology, 10, 191–199. doi:10.1016/S0929-1393(98)00120-6
  • Bishaw, B., & Abdelkadir, A. (2003). Agroforestry and community forestry for rehabilitation of degraded watersheds on the Ethiopian highlands. International Conference on African Development Archives(pp. 78). Addis Ababa, Ethiopia. Retrieved from https://scholarworks.wmich.edu/africancenter_icad_archive/78
  • Boffa, J. M. 2000. West African agroforestry parklands: Keys to conservation and sustainable management. UNASYLVA-FAO. pp. 11–17.
  • Bosworth, D., Birdsey, R., Joyce, L., & Millar, C. (2008). Climate change and the nation’s forests: Challenges and opportunities. Journal of Forestry, 106(4), 214–221.
  • Bunker, D. E., Declerck, F., Bradford, J. C., Colwell, R. K., Perfecto, I., Phillips, O. L., … Naeem, S. (2005). Species loss and aboveground carbon storage in a tropical forest. Science, 310, 1029–1031. doi:10.1126/science.1117682
  • Cavanaugh, K. C., Gosnell, J. S., Davis, S. L., Ahumada, J., Boundja, P., Clark, D. B., … Sheil, D. (2014). Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Global Ecology and Biogeography, 23(5), 563–573.
  • Chisholm, R. A., Muller‐Landau, H. C., Abdul Rahman, K., Bebber, D. P., Bin, Y., Bohlman, S. A., … CAO, H. (2013). Scale‐dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101(5), 1214–1224. doi:10.1111/1365-2745.12132
  • Demessie, A., Singh, B. R., & Lal, R. (2013). Soil carbon and nitrogen stocks under chronosequence of farm and traditional agroforestry land uses in Gambo District, Southern Ethiopia. Nutrient Cycling in Agroecosystems, 95, 365–375.
  • Dimobe, K., Tondoh, J. E., Weber, J. C., Bayala, J., Ouédraogo, K., & Greenough, K. (2018). Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives. PloS One, 13, e0199488.
  • FAO (Food for Agricultural Organization). (2005). Forests and Climate Change Working Paper 4 [Online]. Available from http://www.fao.org/forestry/11280-03f2112412b94f8ca5f9797c7558e9bc.pdf
  • FAO (Food for Agricultural Organization). (2010). Global Forest Resource Assessment 2010. Rome: Food And Agriculture Organization Of The United Nations.
  • FAO (Food for Agricultural Organization). (2015). Global Forest Resources Assessments. Food and Agriculture Organization of the United Nations. Rome, Italy.
  • Folega, F., Gabriel, S., Zhang, C. Y., Hai, Z. X., Wala, K., Batawila, K., & Akpagana, K. (2011). Evaluation of agroforestry species in potential fallows of areas gazetted as protected areas in North-Togo. African Journal of Agricultural Research, 6, 2828–2834.
  • Gebreegziabher, Z., Mekonnen, A., Kassie, M., & Köhlin, G. 2010. Household tree planting in Tigrai, northern Ethiopia: Tree species, purposes, and determinants.
  • Gebrehiwot, K. (2004). Dryland agro-forestry strategy for Ethiopia. Paper presented at the dryland agroforestry workshope (pp.1–20). Mekelle, Tigray, Ethiopia, World Agroforestry Centre-ICRAF.
  • Gebrewahid, Y., & Abrehe.(2019a). Biodiversity conservation through indigenous agricultural practices: Woody species composition, density and diversity along an altitudinal gradient of Northern Ethiopia. Cogent Food & Agriculture, 5(1), 1700744.
  • Gebrewahid, Y., Gebre-Egziabhier, T. B., Teka, K., & Birhane, E. (2018). Carbon stock potential of scattered trees on farmland along an altitudinal gradient in Tigray, Northern Ethiopia. Ecological Processes, 7, 40.
  • Gebrewahid, Y., Teka, K., Gebre-Egziabhier, T. B., Tewolde-Berhan, S., Birhane, E., Eyasu, G., & Meresa, E. J. E. P. (2019b). Dispersed trees on smallholder farms enhance soil fertility in semi-arid Ethiopia. Ecological Processes, 8(1). doi:10.1186/s13717-019-0190-8
  • Grossman, R.B, & Reinsch, T.G. (2002). 2.1 bulk density and linear extensibility. Methods Of Soil Analysis: Part 4 Physical Methods, 5, 201-228.
  • Hadgu, K. M., Kooistra, L., Rossing, W. A., & Van Bruggen, A. H. (2009). Assessing the effect of Faidherbia albida based land use systems on barley yield at field and regional scale in the highlands of Tigray, Northern Ethiopia. Food Security, 1, 337–350.
  • Heather, D. V., Michael, R. W., Stephen, B. C., Ariel, E. L., & Frederick, N. S. (2010). Relationship between aboveground biomass and multiple measures of biodiversity in subtropical Forest of Puerto Rico. Biotropica, 42(3), 290–299.
  • Henry, M., Tittonell, P., Manlay, R. J., Bernoux, M., Albrecht, A., & Vanlauwe, B. (2009). Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agriculture, Ecosystems & Environment, 129, 238–252.
  • Houle, G. (2007). Determinants of fine‐scale plant species richness in a deciduous forest of northeastern North America. Journal of Vegetation Science, 18, 345–354.
  • Hunde, K. K. (2015). The role of Agroforestry system as strategy to adapt and mitigate climate change: A review with examples from Tropical and Temperate regions. Climatic Change, 1, 20–25.
  • Jamnadass, R., Place, F., Torquebiau, E., Malézieux, E., Liyama, M., Sileshi, G., … Dawson, I. (2013). Agroforestry, food and nutritional security.
  • Karna, Y. K. 2012. Mapping above ground carbon using world view satellite image and lidar data in relationship with tree diversity and forests [M.S. thesis]. University of Twente, Enschede, The Netherlands.
  • Kassa, H., Gebrehiwet, K., & Yamoah, C. (2010). Balanites aegyptiaca, a potential tree for parkland agroforestry systems with sorghum in Northern Ethiopia. Journal of Soil Science and Environmental Management, 1, 107–114.
  • Kiptot, E., Franzel, S., & Degrande, A. (2014). Gender, agroforestry and food security in Africa. Current Opinion in Environmental Sustainability, 6, 104–109.
  • Kumar, B. M., & Nair, P. R. (2004). The enigma of tropical homegardens. Agroforestry Systems, 61, 135–152.
  • Kumar, B. M., & Nair, P. R. (2011). Carbon sequestration potential of agroforestry systems: Opportunities and challenges. London/New York: Springer Dordrechat Heidelbery/Springer Science & Business Media.
  • Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., & Neufeldt, H. (2012a). Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agriculture, Ecosystems & Environment, 158, 225–234.
  • Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., & Neufeldt, H. (2012b). Allometric equations for estimating biomass in agricultural landscapes: II. Belowground biomass. Agriculture, Ecosystems & Environment, 158, 225–234.
  • Kuyah, S., Sileshi, G. W., Njoloma, J., Mng’omba, S., & Neufeldt, H. (2014). Estimating aboveground tree biomass in three different miombo woodlands and associated land use systems in Malawi. Biomass and Bioenergy, 66, 214–222.
  • Lei, X., WANG, W., & PENG, C. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39, 1835–1847.
  • Lexerød, N. L., & Eid, T. (2006). An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management, 222, 17–28.
  • Liang, J., Buongiorno, J., Monserud, R. A., Kruger, E. L., & Zhou, M. (2007). Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality. Forest Ecology and Management, 243, 116–127.
  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J., Hector, A., … Schmid, B. (2001). Biodiversity and ecosystem functioning: Current knowledge and future challenges. science, 294, 804–808. doi:10.1126/science.1064088
  • Magurran, A. (2004). Measuring Biological Diversity. England: Blackwell Pub.
  • Matocha, J., Schroth, G., Hills, T., & HOLE, D. (2012). Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In Agroforestry-the future of global land use (pp. 105–126). Springer. doi:10.1007/978-94-007-4676-3_9
  • Mbow, C., Smith, P., Skole, D., Duguma, L., & Bustamante, M. (2014). Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6, 8–14.
  • Midgley, G. F., Bond, W. J., Kapos, V., Ravilious, C., Scharlemann, J. P., & Woodward, F. I. (2010). Terrestrial carbon stocks and biodiversity: Key knowledge gaps and some policy implications. Current Opinion in Environmental Sustainability, 2, 264–270.
  • Nair, P. K. R, Nair, V, Gama-Rodrigues, E, Garcia, R, Haile, S, Howlett, D, & Tonucci, R. (2009). Soil Carbon in Agroforestry Systems: an Unexplored Treasure? Nature Precedings. doi: 10.1038/npre.2009.4061.1
  • Nakakaawa, C., Aune, J., & Vedeld, P. (2010). Changes in carbon stocks and tree diversity in agro-ecosystems in south western Uganda: What role for carbon sequestration payments? New Forests, 40, 19–44.
  • Negash, M., & Starr, M. (2015). Biomass and soil carbon stocks of indigenous agroforestry systems on the south-eastern Rift Valley escarpment, Ethiopia. Plant and Soil, 393(1–2), 95–107. doi:10.1007/s11104-015-2469-6
  • Newaj, R., Chaturvedi, O., & Handa, A. (2016). Recent development in agroforestry research and its role in climate change adaptation and mitigation. Indian Journal of Agroforestry, 18, 1–9.
  • Nikiema, A. (2005). Agroforestry parkland species diversity: Uses and management in semi-arid West-Africa (Burkina Faso). Agroforestry Systems, 60(1), 1–2. doi:10.1023/b:agfo.0000009399.14373.57
  • Noble, I., Bolin, B., Ravindranath, N., Verardo, D., & Dokken, D. (2000). Land use, land use change, and forestry. Environmental Conservation, 28(3), 284–293. Cambridge, UK: Cambridge University Press, 200. doi:10.1017/s0376892901280308
  • Nuberg, I., George, B., & Reid, R. (2009). Agroforestry for natural resource management. Australia: CSIRO publishing.
  • O’Neill, G. A., Dawson, I., Sotelo-Montes, C., Guarino, L., Guariguata, M., Current, D., & Weber, J. C. (2001). Strategies for genetic conservation of trees in the Peruvian Amazon. Biodiversity & Conservation, 10, 837–850.
  • Pearson, T., Walker, S., & BROWN, S. (2005). Sourcebook for land use, land-use change and forestry projects. p. 64. Washingiton, DC: Winrock International.
  • Pearson, T. R., Brown, S. L., & Birdsey, R. A. (2007). Measurement guidelines for the sequestration of forest carbon. Gen. Tech. Rep. NRS-18. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 42 p. 18. DOI:10.1094/PDIS-91-4-0467B
  • Rahayu, S., Lusiana, B., & Van Noordwijk, M. (2005). Above ground carbon stock assessment for various land use systems in Nunukan, East Kalimantan. Carbon Stock Monitoring in Nunukan, East Kalimantan: A Spatial and Modelling Approach. PP. 21–34. SE Asia, Bogor, Indonesia: World Agroforestry Centre.
  • Roberts, D. W., & ROBERTS, M. D. W. (2016). Package ‘labdsv’. Ordination and Multivariate.
  • Rosenstock, T., Tully, K., arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K., & Verchot, L. (2014). Agroforestry with N2-fixing trees: Sustainable development’s friend or foe? Current Opinion in Environmental Sustainability, 6, 15–21. doi:10.1016/j.cosust.2013.09.001
  • Roshetko, J. M., Delaney, M., Hairiah, K., & Purnomosidhi, P. (2002). Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage?. American Journal of Alternative Agriculture, 17(3), 138–148. doi:10.1079/AJAA200116
  • SAGAR, R., & Singh, J. (2006). Tree density, basal area and species diversity in a disturbed dry tropical forest of northern India: Implications for conservation. Environmental Conservation, 33, 256–262. doi:10.1017/S0376892906003237
  • Sanchez, P. A., Buresh, R. J., & Leakey, R. R. (1997). Trees, soils, and food security. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352, 949–961. doi:10.1098/rstb.1997.0074
  • Schwab, N., Schickhoff, U., & Fischer, E. (2015). Transition to agroforestry significantly improves soil quality: A case study in the central mid-hills of Nepal. Agriculture, Ecosystems & Environment, 205, 57–69. doi:10.1016/j.agee.2015.03.004
  • Shannon, C., & Weaver, W. (1963). The measurement theory of communication. Urbana, IL: University of Illinois Press.
  • Smith, J., Pearce, B. D., & Wolfe, M. S. (2013). Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture and Food Systems, 28, 80–92.
  • Strassburg, B. B., Kelly, A., Balmford, A., Davies, R. G., Gibbs, H. K., Lovett, A., … Turner, R. K. (2010). Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conservation Letters, 3, 98–105. doi:10.1111/conl.2010.3.issue-2
  • Suo, A.-N., Ju, T.-Z., & Ge, J.-P. (2008). Relationship between species richness and biomass on environmental gradient in natural forest communities on Mt. Xiaolongshan, northwest China. Forestry Studies in China, 10, 212–219. doi:10.1007/s11632-008-0041-7
  • Swamy, S., & Puri, S. (2005). Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agroforestry Systems, 64, 181–195. doi:10.1007/s10457-004-1999-3
  • Szwagrzyk, J., & Gazda, A. (2007). Above‐ground standing biomass and tree species diversity in natural stands of Central Europe. Journal of Vegetation Science, 18, 555–562.
  • Takimoto, A., Nair, P. R., & Nair, V. D. (2008). Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems & Environment, 125, 159–166.
  • Talbot, J. 2010. Carbon and biodiversity relationships in tropical forests. Multiple Benefits Series, 4.
  • Tesemma, M. N. 2013. The indigenous agroforestry systems of the south-eastern Rift Valley escarpment, Ethiopia: Their biodiversity, carbon stocks, and litterfall.
  • Tilahun, G., Kebede, F., & HAFTU, S. (2015). Soil properties and carbon sequestration under desert date (Balanites aegyptiaca) in the lowlands of Northern Ethiopia. Journal of Soil Science and Environmental Management, 6, 215–224.
  • Unruh, J., Houghton, R., & Lefebvre, P. (1993). Carbon storage in agroforestry: An estimate for sub-Saharan Africa. Climate Research, 3, 39–52. doi:10.3354/cr003039
  • Vaast, P., & Somarriba, E. (2014). Trade-offs between crop intensification and ecosystem services: The role of agroforestry in cocoa cultivation. Agroforestry Systems, 88, 947–956.
  • Van Con, T., Thang, N. T., Khiem, C. C., Quy, T. H., Lam, V. T., Van Do, T., & Sato, T. (2013). Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. Forest Ecology and Management, 310, 213–218.
  • Verheij, E. (2003). Agroforestry. p. 97. Wageningen, the Netherlands: Agromisa Foundation.
  • WANG, W., LEI, X., MA, Z., KNEESHAW, D. D., & PENG, C. (2011). Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506–515.
  • Zhang, Y., Duan, B., Xian, J., Korpelainen, H., & LI, C. (2011). Links between plant diversity, carbon stocks and environmental factors along a successional gradient in a subalpine coniferous forest in Southwest China. Forest Ecology and Management, 262, 361–369.