1,248
Views
1
CrossRef citations to date
0
Altmetric
PLANT SCIENCES

Allelopathic sorghum aqueous extracts reduce biomass of hairy beggarticks

, , , , , , & | (Reviewing editor) show all
Article: 1810382 | Received 25 Jan 2020, Accepted 10 Aug 2020, Published online: 27 Aug 2020

References

  • Abbas, T., Nadeem, M. A., Tanveer, A., Farooq, N., & Ali Zohaib, A. (2016). Mulching with allelopathic crops to manage herbicide resistant littleseed canarygrass. Herbologia: An International Journal on Weed Research and Control, 16(1), 31–11. https://doi.org/10.5644/Herb.16.1.04
  • Al-Khatib, K. (2020). Herbicide symptoms: Photosystem II inhibitors. University of California Davis.
  • Alsaadawi, I. S., Tawfiq, A. A., & Malih, H. M. (2017). Effect of allelopathic sorghummulch on growth and yield of faba bean (Vicia faba) and companion weeds. TunisianJournal of Plant Protection, 12, 123–127. https://wca2017.sciencesconf.org/data/pages/book_wca2017_en.pdf
  • Anaya, A. L. (2006). Allelopathic organisms and molecules: Promising bioregulators for thecontrol of plant diseases, weeds, and other pests. In Inderjit & K. G. Mukerji (Eds.), Allelochemicals: Biological Control of Plant Pathogens and Diseases (pp. 31–78). The Netherlands: Springer.
  • Baucom, R. S., & Busi, R. (2019). Evolutionary epidemiology in the field: A proactive approach for identifying herbicide resistance in problematic crop weeds. A commentary on Comont et al., 223: 1584–1594. New Phytologist, 223(3), 1056–1058. https://doi.org/10.1111/nph.15959
  • Bean, B. (2017). Utilizing sorghum stalks for grazing. United Sorghum Checkoff program.
  • Beckie, H. J., Ashworth, M. B., & Flower, K. C. (2019). Herbicide resistance management: Recent developments and trends. Plants, 8(6), 161. https://doi.org/10.3390/plants8060161
  • Belz, R. G., & Cedergreen, N. (2010). Parthenin hormesis in plants depends on growth conditions. Environmental and Experimental Botany, 69(3), 293–301. https://doi.org/10.1016/j.envexpbot.2010.04.010
  • Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70(5), 698–707. https://doi.org/10.1002/ps.3726
  • Ben-Hammouda, M., Kremer, R. J., & Minor, H. C. (1995). Phytotoxicity of extracts from sorghum plant components on wheat seedlings. Crop Science, 35(6), 1652–1656. https://doi.org/10.2135/cropsci1995.0011183X003500060023x
  • Blum, U., King, L. D., Gerig, T. M., Lehman, M. E., Worsham, A. D. (1997). Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. American Journal of Alternative Agriculture, 12(4), 146–161
  • BMJ. (2019). Probable carcinogenicity of glyphosate. British Medical Journal, 365, 1613. https://doi.org/10.1136/bmj.I1613.
  • Busk, P. K., & Møller, B. L. (2002). Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiology, 129(3), 1222–1231. https://doi.org/10.1104/pp.000687
  • Chakandinakira, A. T., Mwedzi, T., Tarakini, T., & Bere, T. (2019). Ecological responses of periphyton dry mass and epilithic diatom community structure for different atrazine and temperature scenarios. Water SA, 45(4 October), 580–591. https://doi.org/10.17159/wsa/2019.v45.i4.7539
  • Cheema, Z. A., & Khaliq, A. (2000). Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agriculture, Ecosystems & Environment, 79(2–3), 105–112. https://doi.org/10.1016/S0167-8809(99)00140-1
  • Cheema, Z. A., Khaliq, A., & Saeed, S. (2004). Weed control in maize (Zea mays L.) through sorghum allelopathy. Journal of Sustainable Agriculture, 23(4), 73–86. https://doi.org/10.1300/J064v23n04_07
  • Chikoye, D. J., Ellis-Jones, C. R., & Kanyomeka, L. (2007). Weed management in Africa: Experiences, challenges and opportunities. XVI International Plant Protection Congress, 652–653.
  • Chivinge, O. A. (1988). A weed survey of arable lands of the small-scale farming sector of Zimbabwe. Zambezia, 15, 167–179. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.514.3011&rep=rep1&type=pdf
  • Chivinge, O. A. (1990). Weed science technological needs for the communal areas of Zimbabwe. Zambezia, 17(2), 133–143. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.3097&rep=rep1&type=pdf
  • Chon, S. U., & Nelson, C. J. (2010). Allelopathy in composite plants. A review. Agronomy Sustainable Development, Springer Verlag/EDP Sciences/INRA, 30(2), 81-110. https://doi.org/10.1007/978-3-642-30595-5_5
  • Davidson, B., Cook, T., Bhagirath, S., & Chauhan, B. S. (2019). Alternative options to glyphosate for control of large Echinochloa colona and Chloris virgata plants in cropping fallows. Plants, 8(8), 245. https://doi.org/10.3390/plants8080245
  • Dayan, F. E. (2006). Factors modulating the levels of the allelochemical sorgoleone. Sorghum Bicolor. Planta, 224, 339–346. https://doi.org/10.1007/s00425-005-0217-5
  • Dayan, F. E., & Duke, S. O. (2009). Biological activity of allelochemicals. In A. E. Osbourn & V. Lanzotti (Eds.), Plant derived natural products—synthesis, function and application (pp. 361–384). Springer.
  • Dayan, F. E. (2019). Current status and future prospects in herbicide discovery. Plants, 8(9), 341. https://doi.org/10.3390/plants8090341
  • de la Cruz, R. A., Domínguez-Martínez, P. A., da Silveira, H. M., Cruz-Hipólito, H. E., Palma-Bautista, C., Vázquez-García, J. G., Domínguez-Valenzuela, J. A., & De Prado, R. (2019). Managementof glyphosate-resistant weeds in mexican citrus groves: Chemical alternatives andeconomic viability, 8(325). https://doi.org/10.3390/plants8090325.
  • de Matos, C. C., Teixeira, R. S., da Silva, I. R., Costa, M. D., & da Silva, A. A. (2019). Interspecific competition changes nutrient: Nutrient ratios of weeds and maize. Journal of Plant Nutrition and Soil Science, 182(2), 286–295. https://doi.org/10.1002/jpln.201800171
  • Duke, S. O.(2007). Weeding with allelochemicals and allelopathy – a commentary. Pest Management Science, 63, 307 4 doi:10.1002/(ISSN)1526-4998
  • Duke, S. O. (2010). Allelopathy: Current status of research and future of the discipline: A commentary. Allelopathy Journal, 25(1), 17–30. https://naldc.nal.usda.gov/download/55154/PDF
  • Duke, S. O. (2015). Proving allelopathy in crop–weed interactions. Weed Science, 63(sp1), 121–132. https://doi.org/10.1614/WS-D-13-00130.1
  • Duke, S. O., Powles, S. B., & Douglas Sammons, R. (2018). Glyphosate – How it became a once in a hundred year herbicide and its future. Outlooks on Pest Management, 29(6), 247–251. https://doi.org/10.1564/v29_dec_03
  • Einhellig, F. A. 1995. Allelopathy: Current status and future goals. ACS Symposium Series, 582. American Chemical Society.
  • Etuk, E. B., Ifeduba, A. V., Okata, U. E., Chiaka, I., Okoli, I. C., Okeudo, N. J., Esonu, B. O., Udedibie, A. B., & Moreki, J. C. (2012). Nutrient composition and feeding value of sorghum forlivestock and poultry: A review. Journal of Animal Science Advances, 2(6), 510–524. https://www.researchgate.net/publication/305387331_Nutrient_Composition_and_Feeding_Value_of_Sorghum_for_Livestock_and_Poultry
  • FAO, W. F. P. (2019). Special Report, FAO/WFP crop and food security assessment mission to South Sudan. 15 March 2019. Food and Agriculture Organization of the United Nations, and the World Food Programme, Rome.
  • Gianessi, L. P. (2013). The increasing importance of herbicides in worldwide crop production. Pest Management Science, 69(10), 1099–1105. https://doi.org/10.1002/ps.3598
  • Gill, H. S. (1982). The role of hand and mechanical weeding in weed management in the advancing countries. In Improving Weed Management: Proceedings of the FAO/IWSS Expert Consultation on Improving Weed Management in Developing Countries (pp. 17–22). Food andAgriculture Organization.
  • Harker, K. N., & O’Donovan, J. T. (2013). Recent weed control, weed management, and integrated weed management. Weed Technology, 27(1), 1–11. https://doi.org/10.1614/WT-D-12-00109.1
  • Harper, S. H. T., & Lynch, J. M. (1982). The role of water-soluble components in phytotoxicity from decomposing straw. Plant and Soil, 65(1), 11–17. https://doi.org/10.1007/BF02376798
  • Hartzler, B. (2009). The cost of convenience: The impact of weeds on crop yields. Proceedings of the Integrated Crop Management Conference, 11. https://lib.dr.iastate.edu/icm/2009/proceedings/11
  • Heap, I. 2019. The international survey of herbicide resistant weeds. Online. Internet. Friday, November 1, 2019. www.weedscience.org
  • Holm, L. G., Pancho, J. V., Herberger, J. P., & Plucknett, D. L. (1979). A geographical atlas of world weeds (pp. 391). John Wiley and Sons.
  • Hussain, S. 2015. Effects of allelopathic crop water extracts with low doses of herbicides on weeds and yield of rainfed wheat and groundnut. PhD thesis. Arid Agriculture University Rawalpindi.
  • Igathinathane, C., Prakash, V. S. S., Padma, U., Babu, G. R., & Womac, A. R. (2006). Interactive computer software development for leaf area measurement. Computers and Electronics in Agriculture, 51(1–2), 1–16. https://doi.org/10.1016/j.compag.2005.10.003
  • Inderjit. (2001). Soils: environmental effect on allelochemical activity. Agronomy Journal, 93(1), 7984. https://doi.org/10.2134/agronj2001.93179x
  • Inderjit. (2005). Soil microorganisms: An important determinant of allelopathic activity. Plant and Soil, 274(1–2), 227–236. https://doi.org/10.1007/s11104-004-0159-x
  • Inderjit, D. S. O. (2003). Ecophysiological aspects of allelopathy. Planta, 217, 529–539. https://doi.org/10.1007/s00425-003-1054-z
  • Inderjit, Keating, K. I. (1999). Allelopathy: principles, procedures, processes and promises for biological control. Advances in Agronomy, 67, 141–232
  • Kobayashi, K. (2004). Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biology and Management, 4(1), 1–7. https://doi.org/10.1111/j.1445-6664.2003.00112.x
  • Kong, C., Xu, X., Zhou, B., Hu, F., Zhang, C., & Zhang, M. (2004). Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry, 65(8), 1123–1128. https://doi.org/10.1016/j.phytochem.2004.02.017
  • Kristjanson, P. M., & Zerbini, E. (1999). Genetic enhancement of sorghum and millets residues fed to ruminants: An ex ante assessment of returns to research. ILLRI Impact Assessment Series 3. International Livestock Research Institute.
  • Kruidhof, H. M., Bastiaans, L., & Kropff, M. J. (2009). Cover crop residue management for optimizing weed control. Plant and Soil, 318(1–2), 169–184. https://doi.org/10.1007/s11104-008-9827-6
  • Krupnik, T. J., Naher, K., Islam, S., Hoque, M. A., Roy, A., Kumar, V., Hossain, I., Hossain, K., Shahrin, S., Gathala, M. K., Shrestha, A., & Uddin, S. M. N. (2016). Integrated weed management: Experiential learning modules – Book 2. CIMMYT.
  • Lee, N., & Thierfelder, C. (2017). Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agronomy for Sustainable Development, 37, (48), 1–25. https://doi.org/10.1007/s13593-017-0453-7
  • Leghari, S. J., Leghari, U. A., Laghari, G. M., Buriro, M., & Soomro, F. A. (2015). An overview on various weed control practices affecting crop. Journal of Chemical, Biological and PhysicalSciences Section B, 6(1), 59–69. November– January 2016
  • Lydon, J., Teasdale, J. R., & Chen, P. K. (1997). Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Science, 45(6), 807–811. https://doi.org/10.1017/S0043174500089001
  • Macías, F. A., Mejías, F. J. R., & Molinillo, J. M. G. (2019). Recent advances in allelopathy for weed control: From knowledge to applications. Pest Management Science, 75(9), 2413–2436. https://doi.org/10.1002/ps.5355
  • Mashingaidze, A. B. 2004. Improving weed management and crop productivity in maize systems in Zimbabwe. PhD thesis, Wageningen University.
  • Meinders, H. C. (1961). Soil survey, Texas County. USDA.
  • Miranda, J. D., Armas, C., Padilla, F. M., & Pugnaire, F. I. (2011). Climate change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. Journal of AridEnvironments, 75, 1302–1309.
  • Moore, M. J., Gillespie, T. J., & Swanton, C. J. (1994). Effect of cover crop mulches on weed emergence, weed biomass, and soybean (Glycine Max) development. Weed Technology, 8(3), 512–518. https://doi.org/10.1017/S0890037X00039609
  • Nandula, V. K. (2019). Herbicide resistance traits in maize and soybean: current status and future outlook. Plants, 8(9), 337. https://doi.org/10.3390/plants8090337
  • Netzly, D. H., & Butler, L. G. (1986). Roots of sorghum exude hydrophobic droplets containing biologically active components. Phytochemistry, 59, 775–778. https://doi.org/10.2135/cropsci1986.0011183X002600040031x
  • Nyamapfene, K. (1991). The soils of Zimbabwe (pp. 179). Nehanda Publishers.
  • Otorkpa, O. J. (2017). Health impact of the indiscriminate use of herbicides in Nigeria. Texila International Journal of Public Health, 5(1), 1–9. https://doi.org/10.21522/TIJPH.2013.05.01.Art004
  • Pan, Z., Baerson, S. R., Wang, M., Bajsa-Hirschel, J., Rimando, A. M., Wang, X., Nanayakkara, N. P. D., Noonan, B. P., Fromm, M. E., Dayan, F. E., Khan, I. A., & Duke, S. O. (2018). A cytochromeP450 CYP71 enzyme expressed in Sorghum bicolor root hair cells participates in the Biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytologist, 218, 616–629. https://doi.org/10.1111/nph.150376
  • Pushpa, K., Madhu, P., & Venkatesh, B. B. (2019). Estimation of HCN content in sorghum under irrigated and stressed conditions. Journal of Pharmacognosy and Phytochemistry, 8(3), 2583–2585. http://dx.doi.org/10.17582/journal.jis/2019/5.2.100.105
  • Putnam, A. R. (1988). Allelochemicals from plants as herbicides. Weed Technology, 2(4), 510–518. https://doi.org/10.1017/S0890037X00032371
  • Ribeiro, J. P. N. (2011). Global Effect Index: A new approach to analyzing allelopathy survey data. Weed Science, 59(1), 113–118. https://doi.org/10.1614/WS-D-10-00062.1
  • Roberts, P. (2015). Sorghum: Good yields even when the rains fail. Farm Radio International.
  • Siddiqui, I., Bajwa, R., & Zil-E-Huma, J. A. (2010). Effect of six problematic weeds on growth and yield of wheat. Pakistan Journal of Botany, 42(4), 2461–2471.
  • Sims, B., Corsi, S., Gbehounou, G., Kienzle, J., Taguchi, M., & Theodor Friedrich, T. (2018). Sustainable weed management for conservation agriculture: Options for smallholder farmers. Agriculture, 8(8), 118. https://doi.org/10.3390/agriculture8080118
  • Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A. B., Singh, N., & Singh, J. (2018). Toxicity, degradation and analysis of the herbicide atrazine. Environmental Chemistry Letters, 16(1), 211–237. https://doi.org/10.1007/s10311-017-0665-8
  • Swanton, C., Roger, O., & Blackshaw, R. E. (2015). Experimental methods for crop-weed competition studies. Weed Science, 63(SP1), 2–11. https://doi.org/10.1614/WS-D-13-00062.1
  • Takano, H. K., de Oliveira, R. S., Jr., Constantin, J., Braz, G. B. P., Franchini, L. H. M., & Burgos, N. R. (2016). Multiple resistance to atrazine andimazethapyr in hairy beggarticks. Ciência E Agrotecnologia, 40(5), 547–554. https://doi.org/10.1590/1413-70542016405022316
  • Tibugari, H., Chiduza, C., & Mashingaidze, A. B. (2020). A survey of problem weeds of sorghum and their management in two sorghum-producing districts of Zimbabwe. Cogent Social Sciences, 6(1), 1738840. https://doi.org/10.1080/23311886.2020.1738840
  • Tibugari, H., Chiduza, C., Mashingaidze, A. B., & Mabasa, S. (2019). Quantification of sorgoleone in sorghum accessions from eight southern African countries. South African Journal of Plantand Soil, 36(1), 41–50. https://doi.org/10.1080/02571862.2018.1469794
  • Trognitz, F., Hackl, E., Widhalm, S., & Sessitsch, A. (2016). The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiology Ecology, 92(10), 1–15. https://doi.org/10.1093/femsec/fiw138
  • Tsai, W.-T. (2019). Trends in the use of glyphosate herbicide and its relevant regulations in Taiwan: A water contaminant of increasing concern. Toxics, 7(1), 4. https://doi.org/10.3390/toxics7010004
  • van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., & Morris, J. G., Jr. (2018). Environmental and health effects of the herbicide glyphosate. Science of the TotalEnvironment, 616-617, 255–268. https://doi.org/10.1016/j.scitotenv.2017.10.309
  • Wang, Y., Yu, J., Zhou, B., Sapkota, S., Wei, F., & Wang, Z. (2018). Atrazine and mesotrione-induced oxidative stress and impact on antioxidant enzymes and chlorophyll contents inbermudagrass. Planta Daninha, v36, e018172227. https://doi.org/org10.1590/S0100-83582018360100146
  • Weidenhamer, J. D. (2006). Distinguishing allelopathy from resource competition: The role of density. In M. J. Reigosa, N. Pedrol, & L. Gonzalez (Eds.), Allelopathy: A Physiological Process with Ecological Implications (pp. 85-103). Springer.
  • Weisberger, D., Nichols, V., Liebman, M., & Sainju, U. M. (2019). Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE, 14(7), e0219847. https://doi.org/10.1371/journal.pone.0219847
  • Weston, L. A., Alsaadawi, I. S., & Baerson, S. R. (2013). Sorghum allelopathy—from ecosystem to molecule. Journal of Chemical Ecology, 39(2), 142–153. https://doi.org/10.1007/s10886-013-0245-8
  • Weston, L. A., & Duke, S. O. (2003). Weed and Crop Allelopathy. Critical Reviews in Plant Sciences, 22(3–4), 367–389. https://doi.org/10.1080/713610861
  • Weston, L. A., & Mathesius, U. (2013). Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. Journal of Chemical Ecology, 39(2), 283–297. https://doi.org/10.1007/s10886-013-0248-5
  • Westwood, J. H., Charudattan, R., Duke, S. O., Fennimore, S. A., Marrone, P., Slaughter, D. C., Swanton, C., & Zollinger, R. (2018). Weed management in 2050: perspectives on the future of weed science. Weed Science, 66(3), 275–285. https://doi.org/10.1017/wsc.2017.78
  • Williams, M. M., II, Boerboom, C. M., & Rabaey, T. L. (2010). Significance of Atrazine in sweet corn weed management systems. Weed Technology, 24(2), 139–142. https://doi.org/10.1614/WT-D-09-00074.1
  • Won, O. J., Uddin, M. R., Park, K. W., Pyon, J. Y., & Park, S. U. (2013). Phenolic compounds in sorghum leaf extracts and their effects on weed control. Allelopathy Journal, 31(1), 147–156. http://www.allelopathy-journal.com
  • Wu, H. W., Walker, S. R., Osten, V. A., & Robinson, G. (2010). Competition of sorghum cultivars and densities with Japanese millet (Echinochloa esculenta). Weed Biology and Management, 10(3), 185–193. https://doi.org/10.1111/j.1445-6664.2010.00383.x
  • Xuan, T. D., Tawata, S., Khanh, T. D., & Chung, I. M. (2005). Decomposition of allelopathic plants in soil. Journal of Agronomy and Crop Science, 191(3), 162–171. https://doi.org/10.1111/j.1439-037X.2005.00170.x