45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative Assessment on Unsteady Aerodynamics of Thin and Thick Airfoils Subjected to Pitching Motion

, , , , &

References

  • Abbott, I. H., and A. E. Von Doenhoff. 2012. Theory of wing sections: Including a summary of airfoil data. New York, United States: Courier Corporation, Dover Publications.
  • Akbari, M., and S. Price. 2003. Simulation of dynamic stall for a naca 0012 airfoil using a vortex method. J. Fluids Struct. 17 (6):855–74. doi: 10.1016/S0889-9746(03)00018-5
  • Amiralaei, M., H. Alighanbari, and S. Hashemi. 2010. An investigation into the effects of unsteady parameters on the aerodynamics of a low reynolds number pitching airfoil. J. Fluids Struct. 26 (6):979–93. doi: 10.1016/j.jfluidstructs.2010.06.004
  • Batther, J., and S. Lee. 2022. Numerical investigation of a pitching airfoil undergoing dynamic stall using delayed detached eddy simulations. Comput. Fluids 249:105691. doi: 10.1016/j.compfluid.2022.105691
  • Danao, L. A., N. Qin, and R. Howell. 2012. A numerical study of blade thickness and camber effects on vertical axis wind turbines. Proc. Inst. Mech. Eng. Part A J. Power and Energ. 226 (7):867–81. SAGE.
  • Dickinson, M. H., and K. G. Götz. 1993. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174 (1):45–64. doi: 10.1242/jeb.174.1.45
  • Ferrari, J. A. 2012. Influence of pitch axis location on the flight characteristics of a naca 0012 airfoil in dynamic stall. Troy, NY: Rensselaer Polytechnic Institute.
  • Ferziger, J. H., M. Perić, and R. L. Street. 2019. Computational methods for fluid dynamics. Berlin Heidelberg, New York, USA: Springer-Verlag.
  • Gharali, K., and D. A. Johnson. 2012. Numerical modeling of an s809 airfoil under dynamic stall, erosion and high reduced frequencies. Appl. Energy 93:45–52. doi: 10.1016/j.apenergy.2011.04.037
  • Katz, J., and A. Plotkin. 2001. Low-speed aerodynamics, volume 13. Cambridge, United Kingdom: Cambridge university Press.
  • Kaul, U. K. 2021. Resolving pitching airfoil transonic aerodynamics by computational fluid dynamics data modeling. J. Fluids Eng. 143 (9):091501. doi: 10.1115/1.4050800
  • Lu, K., Y. Xie, and D. Zhang. 2013. Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion. J. Fluids Struct. 36:184–94. doi: 10.1016/j.jfluidstructs.2012.10.004
  • Masruddin, S., R. S. Rana, D. K. Patel, and N. R. Annem. 2018. Design and development of a contact-aided compliant flapping wing for micro air vehicle. In Mechanism and Machine Science: Select Proceedings of Asian MMS. Springer, 691–9.
  • Mueller, T. J. 2000. Aerodynamic measurements at low Reynolds numbers. In 12th Aerodynamic Testing Conference. p. 598.
  • Ōtomo, S., S. Henne, K. Mulleners, K. Ramesh, and I. M. Viola. 2021. Unsteady lift on a high-amplitude pitching aerofoil. Exp. Fluids 62 (1):1–18. doi: 10.1007/s00348-020-03095-2
  • Oyeniran, N. D., T. Miyake, H. Terashima, R. Seki, K. Ishiko, and T. Nonomura. 2022. Unsteady aerodynamics around a pitching airfoil with shock and shock-induced boundary-layer separation. AIAA J. 60 (12):6557–65. doi: 10.2514/1.J062054
  • Pelletier, A., and T. J. Mueller. 2000. Low reynolds number aerodynamics of low-aspect-ratio, thin/flat/cambered-plate wings. J. Aircraft 37 (5):825–32. doi: 10.2514/2.2676
  • Raeisi, B., and H. Alighanbari. 2014. Cfd analysis of oscillating blades for small horizontal axis wind turbines in dynamic stall condition. Wind Eng. 38 (5):499–522. doi: 10.1260/0309-524X.38.5.499
  • Rezaei, A. S., and H. Taha. 2021. Circulation dynamics of small-amplitude pitching airfoil undergoing laminar-to-turbulent transition. J. Fluids Struct. 100:103177. doi: 10.1016/j.jfluidstructs.2020.103177
  • Selig, M. S., J. J. Guglielmo, A. P. Broeren, and P. Giguere. 1995. Summary of low-speed airfoil data: Vol. 1. Virginia Beach, Virginia, USA: SOARTECH Publications.
  • Shaik, M., and S. M. Hazarika. 2022a. Aerodynamic investigation of passer domesticus inspired biomimetic wing at low Reynolds number. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236 (14):7690–704. doi: 10.1177/09544062221079509
  • Shaik, M., and S. M. Hazarika. 2022b. Numerical investigation of flow over oscillating cambered foil at low reynolds number. J. Fluids Eng. 144 (7):071303. doi: 10.1115/1.4053556
  • Shaik, M., and S. M. Hazarika. 2023. Unsteady aerodynamics of plunging cambered foil at low reynolds number. Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng. 237 (2):374–86. doi: 10.1177/09544100221101724
  • Thakor, M., G. Kumar, D. Das, and A. De. 2020. Investigation of asymmetrically pitching airfoil at high reduced frequency. Phys. Fluids 32 (5):053607 (1-17). doi: 10.1063/5.0006659
  • Wang, S., D. B. Ingham, L. Ma, M. Pourkashanian, and Z. Tao. 2010. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Comput. Fluids 39 (9):1529–41. doi: 10.1016/j.compfluid.2010.05.004
  • Wernert, P., W. Geissler, M. Raffel, and J. Kompenhans. 1996. Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J. 34 (5):982–9. doi: 10.2514/3.13177
  • Xin, Z., Z. Cai, Y. Ren, and H. Liu. 2022. Comparative analysis of the self-propelled locomotion of a pitching airfoil near the flat and wavy ground. Biomimetics 7 (4):239. doi: 10.3390/biomimetics7040239
  • You, Y., S. Wang, W. Lv, Y. Chen, and U. Gross. 2021. A cfd model of frost formation based on dynamic meshes technique via secondary development of ansys fluent. Int. J. Heat Fluid Flow 89:108807. doi: 10.1016/j.ijheatfluidflow.2021.108807
  • Yu, G., X. Zhu, and Z. Du. 2010. Numerical simulation of a wind turbine airfoil: Dynamic stall and comparison with experiments. Proc. Inst. Mech. Eng. Part A J. Power and Energ. 224 (5):657–77. doi: 10.1243/09576509JPE942

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.