39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Clinical deep model to analyse medical multivariate time-series data for health diagnosis

, , , , , & show all
Received 20 Jun 2023, Accepted 08 Mar 2024, Published online: 18 Mar 2024

References

  • Gómez S, Sánchez S, González D, et al. Strategy of active case – finding for COVID – 19 in Bogota city, 2020 – 2021. 2021 CongresoColombiano y ConferenciaInternacional de Calidad de Aire y SaludPública (CASAP); Bogota, Colombia: IEEE. 2021; p. 1–5. doi: 10.1109/CASAP54985.2021.9703421
  • Xu J, Hu Y, Liu H, et al. A novel multivariable time series prediction model for acute kidney injury in general hospitalization. Int J Med Inform. 2022;161:104729. doi: 10.1016/j.ijmedinf.2022.104729
  • Martínez-Agüero S, Marques AG, Mora-Jiménez I, et al. Data and network analytics for COVID-19 ICU patients: a case study for a Spanish hospital. IEEE J Biomed Health Inform. 2021;25(12):4340–4353. doi: 10.1109/JBHI.2021.3116804
  • Li Q, Xu Y. VS-GRU: a variable sensitive gated recurrent neural network for multivariate time series with massive missing values. Appl Sci. 2019;9(15):3041. doi: 10.3390/app9153041
  • Xia X. Impact of COVID-19 on India’s Public Health from 2019 to 2021. 2021 International Conference on Public Health and Data Science (ICPHDS); 2021. p. 133–138. doi: 10.1109/ICPHDS53608.2021.00035
  • Park J, Artin MG, Lee KE, et al. Deep learning on time series laboratory test results from electronic health records for early detection of pancreatic cancer. J Biomed Informat. 2022;131:104095. doi: 10.1016/j.jbi.2022.104095
  • Shickel B, Tighe PJ, Bihorac A, et al. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inform. 2018;22(5):1589–1604. doi: 10.1109/jbhi.2017.2767063
  • Lee Y, Jun E, Choi J, et al. Multi-view integrative attention-based deep representation learning for irregular clinical time-series data. IEEE J Biomed Health Inform. 2022;26(8):1–1. doi: 10.1109/jbhi.2022.3172549
  • Xiao C, Choi E, Sun J. Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J Am Med Inf Assoc. 2018;25(10):1419–1428. doi: 10.1093/jamia/ocy068
  • El-Sappagh S, Abuhmed T, Riazul Islam SM, et al. Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data. Neurocomputing. 2020;412:197–215. doi: 10.1016/j.neucom.2020.05.087
  • Silva H, Andrade E, Araújo D, et al. Sentiment analysis of tweets related to SUS before and during COVID-19 pandemic. IEEE Latin America Trans. 2022;20(1):6–13. doi: 10.1109/TLA.2022.9662168
  • Yue L, Tian D, Chen W, et al. Deep learning for heterogeneous medical data analysis. World Wide Web. 2020;23(5):2715–2737. doi: 10.1007/s11280-019-00764-z
  • Saifuddin KM, Akbas E, Khanov M, et al. Effects of COVID-19 on individuals in opioid addiction recovery. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA); 2021, p. 1333–1340. doi: 10.1109/ICMLA52953.2021.00216.
  • Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. npj Digital Med. 2018;1(1). doi: 10.1038/s41746-018-0029-1
  • Eslami T, Mirjalili V, Fong A, et al. ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front Neuroinform. 2019;13. doi: 10.3389/fninf.2019.00070
  • Luo L, Wang Y, Mo DY. Identifying COVID-19 personal health mentions from tweets using masked attention Model. IEEE Access. 2022;10:59068–59077. doi: 10.1109/ACCESS.2022.3179808
  • Qian K, Schmitt M, Zheng H, et al. Computer audition for fighting the SARS-CoV-2 corona crisis—introducing the multitask speech corpus for COVID-19. IEEE Int Things J. 2021;8(21):16035–16046. doi: 10.1109/JIOT.2021.3067605
  • Tissot HC, Shah AD, Brealey D, et al. Natural language processing for mimicking clinical trial recruitment in critical care: a semi-automated simulation based on the LeoPARDS trial. IEEE J Biomed Health Inform. 2020;24(10):2950–2959.
  • Gandy K. Remote patient monitoring: a promising digital health frontier. 2021 International Conference on Information and Digital Technologies (IDT); 2021, p. 297–302, doi: 10.1109/IDT52577.2021.9497599
  • Zhuang Y, Sheets LR, Chen Y-W, et al. A patient-centric health information exchange framework using blockchain technology. IEEE J Biomed Health Inform. 2020;24(8):2169–2176. doi: 10.1109/JBHI.2020.2993072
  • Das A, Rad P. Opportunities and challenges in explainable artificial intelligence (xai): a survey. 2020. arXiv preprint arXiv:2006.11371.
  • Gulum MA, Trombley CM, Kantardzic M. A review of explainable deep learning cancer detection models in medical imaging. Appl Sci. 2021;11(10):4573. doi: 10.3390/app11104573
  • Amann J, Blasimme A, Vayena E, et al., Explainability for artifcial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 2020;20(1):1–9. doi: 10.1186/s12911-020-01332-6
  • Kök İ, Okay FY, Muyanlı Ö, et al. Explainable artificial intelligence (xai) for internet of things: a survey. IEEE Int Things J. 2023;10(16) 14764–14779. doi: 10.1109/JIOT.2023.3287678
  • MacFarlane Z, Gao Y, Isakadze N, et al. Comprehensive Digital Health Intervention to improve delivery of cardiac rehabilitation. 2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE); 2021, p. 115–116, doi: 10.1109/CHASE52844.2021.00023
  • González-García J, Tellería-Orriols C, Estupiñán-Romero F, et al. Construction of empirical care pathways process models from multiple real-world datasets. IEEE J Biomed Health Inform. 2020;24(9):2671–2680. doi: 10.1109/JBHI.2020.2971146
  • Liu N, Kumara S, Reich E. Gaining insights into patient satisfaction through interpretable machine learning. IEEE J Biomed Health Inform. 2021;25(6):2215–2226. doi: 10.1109/JBHI.2020.3038194
  • Xu D, Sheng JQ, Hu PJ-H, et al. A deep learning–based unsupervised method to impute missing values in patient records for improved management of cardiovascular patients. IEEE J Biomed Health Inform. 2021;25(6):2260–2272. doi: 10.1109/JBHI.2020.3033323
  • Abad ZSH, Maslove DM, Lee J. Predicting discharge destination of critically Ill patients using machine learning. IEEE J Biomed Health Inform. 2021;25(3):827–837. doi: 10.1109/JBHI.2020.2995836

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.